Advertisement

Bioprocess and Biosystems Engineering

, Volume 37, Issue 12, pp 2529–2537 | Cite as

Kinetics of sucrose conversion to fructo-oligosaccharides using enzyme (invertase) under free condition

  • Deepa C. Khandekar
  • Tapas Palai
  • Aman Agarwal
  • Prashant K. Bhattacharya
Original Paper

Abstract

The study reports the synthesis of fructo-oligosaccharide (FOS) from sucrose using invertase derived from Saccharomyces cerevisiae. The reaction was conducted in a batch mode under free enzyme condition. Fructo-oligosaccharide formation was detected at a high sucrose concentration of over 200 g/L. The investigation was extended to study the effect of different parameters such as initial sucrose concentration (ISC), pH, and enzyme concentration. A maximum FOS yield of 10 % (dry basis) was observed using 525 g/L of ISC, with 6 U/mL of the enzyme, and pH 5.5 at 40 °C. 1-Kestose was the major product of among different forms of FOS. The FOS yield increased with an increase in sucrose concentration up to 525 g/L, beyond which it started to decrease. However, the maximum FOS yield was not affected by the increasing concentration of the enzyme beyond a certain level (2 U/mL). Furthermore, the activity of enzyme slightly increased with an increase in the pH up to 6, and thereafter it declined. Addition of glucose decreased the FOS yield because of enzyme inhibition. A five-step, ten-parameter model was developed, for which the simulation was performed in COPASI. The results predicted by the model were consistent with the experimental data.

Keywords

Fructo-oligosaccharide Invertase Kinetic model Sucrose Saccharomyces cerevisiae 

List of symbols

E

Enzyme

f(k)

Objective function of rate constants

Fru

Fructose

Glu

Glucose

k

Rate constants for step reactions

Km

Michaelis–Menten constant

Suc

Sucrose

U

Unit of enzyme

Vm

Maximum reaction rate

Abbreviations

FOS

Fructo-oligosaccharides

HPLC

High performance liquid chromatography

ISC

Initial sucrose concentration

PAHBAH

p-Hydroxybenzhydrazide

Notes

Acknowledgments

One of the authors (PKB) gratefully acknowledges the Department of Biotechnology (DBT), Government of India, for partial financial support against sanction order number: BT/PR14530/PID/06/599/2010. Further, the first author (DCK) gratefully acknowledges Prof. Ashok Kumar of the Department of Biological Sciences and Bioengineering at I.I.T.-Kanpur, for useful discussions in carrying out the experimental work.

References

  1. 1.
    Yun JW (1996) Fructooligosaccharides-occurrence, preparation, and application. Enzyme Microb Technol 19:107–117CrossRefGoogle Scholar
  2. 2.
    Christophe KS, Courtin M, Verjans P, Delcour JA (2009) Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 112:831–837CrossRefGoogle Scholar
  3. 3.
    Palai T, Bhattacharya PK (2013) Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. J Biosci Bioeng 115:668–673CrossRefGoogle Scholar
  4. 4.
    Palai T, Mitra S, Bhattacharya PK (2012) Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng 114:418–423CrossRefGoogle Scholar
  5. 5.
    Sen D, Gosling A, Stevens GW, Bhattacharya PK, Barber AR, Kentish SE, Bhattacharjee C, Gras SL (2011) Galactosyl oligosaccharide purification by ethanol precipitation. Food Chem 128:773–777CrossRefGoogle Scholar
  6. 6.
    Sen D, Sarkar A, Gosling A, Gras SL, Stevens GW, Kentish SE, Bhattacharya PK, Barber AR, Bhattacharjee C (2011) Feasibility study of enzyme immobilization on polymeric membrane: a case study with enzymatically galacto-oligosaccharides production from lactose. J Membr Sci 378:471–478CrossRefGoogle Scholar
  7. 7.
    Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457CrossRefGoogle Scholar
  8. 8.
    Silva MF, Rigo D, Mossi V, Golunski S, GdO Kuhn, Luccio MD, Dallago R, Oliveira Dd, Oliveira JV, Treichel H (2013) Enzymatic synthesis of fructooligosaccharides by inulinases from Aspergillus niger and Kluyveromyces marxianus NRRL Y-7571 in aqueous-organic medium. Food Chem 138:148–153CrossRefGoogle Scholar
  9. 9.
    Kurakake M, Masumoto R, Maguma K, Kamata A, Saito E, Ukita N, Komaki T (2010) Production of fructooligosaccharides by β-fructofuranosidases from Aspergillus oryzae KB. J Agric Food Chem 58:488–492CrossRefGoogle Scholar
  10. 10.
    Park HE, Park NH, Kim MJ, Lee TH, Lee HG, Yang JY, Cha J (2003) Enzymetic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzyme Microb Technol 32:820–827CrossRefGoogle Scholar
  11. 11.
    Sangeetha PT, Ramesh MN, Prapulla SG (2005) Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem 40:1085–1088CrossRefGoogle Scholar
  12. 12.
    Yun JW, Jung KH, Oh JW, Lee JH (1990) Semibatch production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. Appl Biochem Biotechnol 24:299–308CrossRefGoogle Scholar
  13. 13.
    Yun JW, Song SK (1993) The production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose oxidase. Biotechnol Lett 15:573–576CrossRefGoogle Scholar
  14. 14.
    Blanch M, Sanchez-Ballesta MT, Escribano MI, Merodio C (2011) Fructo-oligosaccharides in table grapes and response to storage. Food Chem 129:724–730CrossRefGoogle Scholar
  15. 15.
    Campbell JM, Bauer LL, Fahey-Jr GC, Hogarth AJCL, Wolf BW, Hunter DE (1997) Selected fructooligosaccharide (1-kestose, nystose, and 1F-β-fructofuranosylnystose) composition of foods and feeds. J Agric Food Chem 45:3076–3082CrossRefGoogle Scholar
  16. 16.
    Palcic MM (1999) Biocatalytic synthesis of oligosaccharides. Curr Opin Biotechnol 10:616–624CrossRefGoogle Scholar
  17. 17.
    Ãvila-Fernandez A, Galicia-Lagunas N, Rodriguez-Alegria ME, Olvera C, Lopez-Munguia A (2011) Production of functional oligosaccharides through limited acid hydrolysis of agave fructans. Food Chem 129:380–386CrossRefGoogle Scholar
  18. 18.
    Balken JAMv, Dooren TJGMv, Tweel WJJvd, Kamphuis J, Meijer EM (1991) Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1F-fructosyltransferase. Appl Microbiol Biotechnol 35:216–221CrossRefGoogle Scholar
  19. 19.
    Ghazi I, Segura AGD, Fernandez-Arrojo L, Alcalde M, Yates M, Rojas-Cervantes ML, Plou FJ, Ballesteros A (2005) Immobilization of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. J Mol Catal B Enzym 35:19–27CrossRefGoogle Scholar
  20. 20.
    Chiang CJ, Lee WC, Sheu DC, Duan KJ (1997) Immobilization of β-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Biotechnol Progr 13:577–582CrossRefGoogle Scholar
  21. 21.
    Ãlvaro-Benito M, Md Abreu, Fernandez-Arrojo L, Plou FJ, Jimenez-Barbero J, Ballesteros A, Polaina J, Fernandez-Lobato M (2007) Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J Biotechnol 132:75–81CrossRefGoogle Scholar
  22. 22.
    Guio F, Rugeles LD, Rojas SE, Palomino MP, Camargo MC, Sanchez OF (2012) Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74. Appl Biochem Biotechnol 167:142–163CrossRefGoogle Scholar
  23. 23.
    Vega-Paulino RJ, Zuniga-Hansen ME (2012) Potential application of commercial enzyme preparations for industrial production of short-chain fructooligosaccharides. J Mol Catal B Enzym 76:44–51CrossRefGoogle Scholar
  24. 24.
    Hidaka H, Hirayama M, Sumi N (1988) A fructooligosaccharide-producing enzyme from Aspergillus niger ATCC 20611. Agric Biol Chem 52:1181–1187CrossRefGoogle Scholar
  25. 25.
    Cruz R, Cruz VD, Belini MZ, Belote JG, Vieira CR (1998) Production of fructooligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Bioresour Technol 65:139–143CrossRefGoogle Scholar
  26. 26.
    L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84CrossRefGoogle Scholar
  27. 27.
    Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2008) Production of fructooligosaccharides by crude enzyme preparations of β-fructofuranosidase from Aureobasidium pullulans. Biotechnol Lett 30:535–539CrossRefGoogle Scholar
  28. 28.
    Santos AMP, Maugeri F (2007) Synthesis of fructooligosaccharides from sucrose using inulinase from Kluyveromyces marxianus. Food Technol Biotechnol 45:181–186Google Scholar
  29. 29.
    Kawamura M, Matsuda N (2008) Synthesis of a series of fructooligosaccharides with sucrose and cycloinulohexaose extending over ten degrees of polymerization using cycloinulooligosaccharide fructanotransferase from Bacillus circulans OKUMZ 31B. Biosci Biotechnol Biochem 72:1119–1121CrossRefGoogle Scholar
  30. 30.
    Fujita K, Hara K, Hashimoto H, Kitahata S (1990) Transfructosylation catalyzed by β-fructofuranosidase from Arthrobacter sp. K-1. Agric Biol Chem 54:2655–2661CrossRefGoogle Scholar
  31. 31.
    Vega R, Hansen MEZ (2014) A new mechanism and kinetic model for the enzymatic synthesis of short-chain fructooligosaccharides from sucrose. Biochem Eng J 82:158–165CrossRefGoogle Scholar
  32. 32.
    Jung KH, Yun JW, Kang KR, Lim JY, Lee JH (1989) Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme Microb Technol 11:491–494CrossRefGoogle Scholar
  33. 33.
    Lee WC, Chiang CJ, Tsai PY (1999) Kinetic modeling of fructo-oligosaccharide production catalyzed by immobilized β-fructofuranosidase. Ind Eng Chem Res 38:2564–2570CrossRefGoogle Scholar
  34. 34.
    Alvarado-Huallanco MB, Maugeri F (2011) Kinetic studies and modelling of the production of fructooligosaccharides by fructosyltransferase from Rhodotorula sp. Catal Sci Technol 1:1043–1050CrossRefGoogle Scholar
  35. 35.
    Kim MH, In MJ, Cha HJ, Yoo YJ (1996) An empirical rate equation for the fructooligosaccharide-producing reaction catalyzed by β-fructofuranosidase. J Ferment Bioeng 82:458–463CrossRefGoogle Scholar
  36. 36.
    Yun JW, Kim DH, Kim KW (1996) Theoretical calculation of the sugar concentrations during enzymatic production of fructooligosaccharides. Biotechnol Tech 10:871–874CrossRefGoogle Scholar
  37. 37.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a complex pathway simulator. Bioinformatics 22:3067–3074CrossRefGoogle Scholar
  38. 38.
    Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273–279CrossRefGoogle Scholar
  39. 39.
    Palai T, Kumar A, Bhattacharya PK (2014) Synthesis and characterization of thermo-responsive poly-N-isopropylacrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme Microb Technol 55:40–49CrossRefGoogle Scholar
  40. 40.
    Smaali I, Jazzar S, Soussi A, Muzard M, Aubry N, Marzouki MN (2012) Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033. Biotechnol Bioprocess Eng 17:385–392CrossRefGoogle Scholar
  41. 41.
    Cairns AJ, Ashton JE (1991) The interpretation of in vitro measurements of fructosyl transferase activity: an analysis of patterns of fructosyl transfer by fungal invertase. New Phytol 118:23–34CrossRefGoogle Scholar
  42. 42.
    Farine S, Versluis C, Bonnici P, Heck A, L’Homme C, Puigserver A, Biagini A (2001) Application of high performance anion exchange chromatography to study invertase-catalysed hydrolysis of sucrose and formation of intermediate fructan products. Appl Microbiol Biotechnol 55:55–60CrossRefGoogle Scholar
  43. 43.
    Lafraya A, Sanz-Aparicio J, Polaina J, Marin-Navarro J (2011) Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Appl Environ Microbiol 77:6148–6157CrossRefGoogle Scholar
  44. 44.
    Fernandez RC, Maresma BG, Juarez A, Martinez J (2004) Production of fructooligosaccharides by β-fructofuranosidase from Aspergillus sp 27H. J Chem Technol Biotechnol 79:268–272CrossRefGoogle Scholar
  45. 45.
    Palai T, Singh AK, Bhattacharya PK (2014) Enzyme, β-galactosidase immobilized on membrane surface for galacto-oligosaccharides formation from lactose: kinetic study with feed flow under recirculation loop. Biochem Eng J 88:68–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Deepa C. Khandekar
    • 1
  • Tapas Palai
    • 1
  • Aman Agarwal
    • 1
  • Prashant K. Bhattacharya
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations