Bioprocess and Biosystems Engineering

, Volume 37, Issue 9, pp 1799–1808 | Cite as

Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric- and image analysis-based techniques

  • Thomas Wucherpfennig
  • Annika Schulz
  • Jaime Arturo Pimentel
  • Gabriel Corkidi
  • Dominik Sieblitz
  • Matthias Pump
  • Gilbert Gorr
  • Kai Schütte
  • Christoph Wittmann
  • Rainer Krull
Original Paper


For the commercially established process of paclitaxel production with Taxus chinensis plant cell culture, the size of plant cell aggregates and phenotypic changes in coloration during cultivation have long been acknowledged as intangible parameters. So far, the variability of aggregates and coloration of cells are challenging parameters for any viability assay. The aim of this study was to investigate simple and non-toxic methods for viability determination of Taxus cultures in order to provide a practicable, rapid, robust and reproducible way to sample large amounts of material. A further goal was to examine whether Taxus aggregate cell coloration is related to general cell viability and might be exploited by microscopy and image analysis to gain easy access to general cell viability. The Alamar Blue assay was found to be exceptionally eligible for viability estimation. Moreover, aggregate coloration, as a morphologic attribute, was quantified by image analysis and found to be a good and traceable indicator of T. chinensis viability.


Taxus chinensis plant cell culture Plant cell aggregates Viability Aggregate coloration Alamar Blue assay Image analysis 


  1. 1.
    Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3(7):387–395Google Scholar
  2. 2.
    Wucherpfennig T, Schilling J, Sieblitz D, Pump M, Schütte K, Wittmann C, Krull R (2012) Improved assessment of aggregate size in Taxus plant cell suspension cultures using laser diffraction. Eng Life Sci 12(6):595–602. doi: 10.1002/elsc.201200039 CrossRefGoogle Scholar
  3. 3.
    Kolewe ME, Henson MA, Roberts SC (2010) Characterization of aggregate size in Taxus suspension cell culture. Plant Cell Rep 29(5):485–494CrossRefGoogle Scholar
  4. 4.
    Kolewe ME, Henson MA, Roberts SC (2011) Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures. Biotechnol Progr 27:1365–1372. doi: 10.1002/btpr.655 CrossRefGoogle Scholar
  5. 5.
    Patil R, Kolewe M, Roberts S (2013) Cellular aggregation is a key parameter associated with long term variability in paclitaxel accumulation in Taxus suspension cultures. Plant Cell Tiss Org 112(3):303–310. doi: 10.1007/s11240-012-0237-3 CrossRefGoogle Scholar
  6. 6.
    Hirasuna TJ, Pestchanker LJ, Srinivasan V, Shuler ML (1996) Taxol production in suspension cultures of Taxus baccata. Plant Cell Tiss Org 44(2):95–102. doi: 10.1007/bf00048185 CrossRefGoogle Scholar
  7. 7.
    Zilkah S, Gressel J (1978) The estimation of cell death in suspension cultures evoked by phytotoxic compounds: differences among techniques. Plant Sci Lett 12(3–4):305–315. doi: 10.1016/0304-4211(78)90083-4 CrossRefGoogle Scholar
  8. 8.
    Duncan D, Widholm J (1990) Measurements of viability suitable for plant tissue cultures. In: Pollard J, Walker J (eds) Plant cell and tissue culture vol. 6. Methods in molecular biology™. Humana Press, New York, pp 29–37. doi: 10.1385/0-89603-161-6:29 CrossRefGoogle Scholar
  9. 9.
    Byth H-A, McHunu BI, Dubery IA, Bornman L (2001) Assessment of a simple, non-toxic alamar blue cell survival assay to monitor tomato cell viability. Phytochemical Anal 12(5):340–346. doi: 10.1002/pca.595 CrossRefGoogle Scholar
  10. 10.
    Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303(2):474–482CrossRefGoogle Scholar
  11. 11.
    Towill LE, Mazur P (1975) Studies on the reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Can J Bot 53(11):1097–1102. doi: 10.1139/b75-129 CrossRefGoogle Scholar
  12. 12.
    Iborra JL, Guardiola J, Montaner S, Cánovas M, Manjón A (1992) 2,3,5-triphenyltetrazolium chloride as a viability assay for immobilized plant cells. Biotech Tech 6(4):319–322. doi: 10.1007/bf02439319 CrossRefGoogle Scholar
  13. 13.
    Jianfeng X, Zhiguo S, Pusun F (1998) Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enzyme Microb Technol 23(1–2):20–27. doi: 10.1016/s0141-0229(98)00011-8 CrossRefGoogle Scholar
  14. 14.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  15. 15.
    Nociari MM, Shalev A, Benias P, Russo C (1998) A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J Immunol Methods 213(2):157–167. doi: 10.1016/s0022-1759(98)00028-3 CrossRefGoogle Scholar
  16. 16.
    Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12(9):12347–12360CrossRefGoogle Scholar
  17. 17.
    O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426. doi: 10.1046/j.1432-1327.2000.01606.x CrossRefGoogle Scholar
  18. 18.
    Baker C, Banerjee S, Tenover F (1994) Evaluation of Alamar colorimetric MIC method for antimicrobial susceptibility testing of gram-negative bacteria. J Clin Microbiol 32(5):1261–1267Google Scholar
  19. 19.
    Collins L, Franzblau S (1997) Microplate Alamarblue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41(5):1004–1009Google Scholar
  20. 20.
    Larson EM, Doughman DJ, Gregerson DS, Obritsch WF (1997) A new, simple, nonradioactive, nontoxic in vitro assay to monitor corneal endothelial cell viability. Invest Ophthalmol Vis Sci 38(10):1929–1933Google Scholar
  21. 21.
    Pfaller M, Grant C, Morthland V, Rhine-Chalborg J (1994) Comparative evaluation of alternative methods for broth dilution susceptibility testing of fluconazole against Candida albicans. J Clin Microbiol 32(2):506–509Google Scholar
  22. 22.
    White M, DiCaprio M, Greenberg D (1996) Assessment of neuronal viability with Alamar blue in cortical and granule cell cultures. J Neurosci Methods 70(2):195–200CrossRefGoogle Scholar
  23. 23.
    Ibaraki Y, Kenji K (2001) Application of image analysis to plant cell suspension cultures. Comput Electron Agr 30(1–3):193–203CrossRefGoogle Scholar
  24. 24.
    Remotti PC, Löffler HJM (1995) Callus induction and plant regeneration from gladiolus. Plant Cell Tiss Org 42(2):171–178. doi: 10.1007/bf00034235 CrossRefGoogle Scholar
  25. 25.
    Smith MAL, Reid JF, Hansen AC, Li Z, Madhavi DL (1995) Non-destructive machine vision analysis of pigment-producing cell cultures. J Biotechnol 40(1):1–11. doi: 10.1016/0168-1656(95)00025-l CrossRefGoogle Scholar
  26. 26.
    Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46(1):23–34CrossRefGoogle Scholar
  27. 27.
    Gibson D, Ketchum R, Vance N, Christen A (1993) Initiation and growth of cell lines of Taxus brevifolia (Pacific yew). Plant Cell Rep 12(9):479–482. doi: 10.1007/bf00236091 CrossRefGoogle Scholar
  28. 28.
    Bruňáková K, Babincová Z, Čellárová E (2004) Selection of callus cultures of Taxus baccata L. as a potential source of paclitaxel production. Eng Life Sci 4(5):465–469. doi: 10.1002/elsc.200420050 CrossRefGoogle Scholar
  29. 29.
    Bruňáková K, Babincová Z, Čellárová E (2005) Production of taxanes in callus and suspension cultures of Taxus baccata L. In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 567–574. doi: 10.1007/1-4020-3200-5_43 CrossRefGoogle Scholar
  30. 30.
    Wickremesinhe ERM, Arteea RN (1993) Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell Tiss Org 35(2):181–193. doi: 10.1007/bf00032968 CrossRefGoogle Scholar
  31. 31.
    Fett-Neto AG, Zhang WY, Dicosmo F (1994) Kinetics of taxol production, growth, and nutrient uptake in cell suspensions of Taxus cuspidata. Biotechnol Bioeng 44(2):205–210. doi: 10.1002/bit.260440209 CrossRefGoogle Scholar
  32. 32.
    Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  33. 33.
    Kim BJ, Gibson DM, Shuler ML (2005) Relationship of viability and apoptosis to taxol production in Taxus sp. suspension cultures elicited with methyl jasmonate. Biotechnol Progr 21(3):700–707. doi: 10.1021/bp050016z CrossRefGoogle Scholar
  34. 34.
    Voytik-Harbin S, Brightman A, Waisner B, Lamar C, Badylak S (1998) Application and evaluation of the Alamar Blue assay for cell growth and survival of fibroblasts. Vitro Cell Dev Biol Anim 34(3):239–246. doi: 10.1007/s11626-998-0130-x CrossRefGoogle Scholar
  35. 35.
    Hulst AC, Meyer MMT, Breteler H, Tramper J (1989) Effect of aggregate size in cell cultures of Tagetes patula on thiophene production and cell growth. Appl Microbiol Biotechnol 30(1):18–25CrossRefGoogle Scholar
  36. 36.
    Pépin M, Smith M, Reid J (1999) Application of imaging tools to plant cell culture: relationship between plant cell aggregation and flavonoid production. Vitro Cell Dev-Pl 35(4):290–295. doi: 10.1007/s11627-999-0036-7 Google Scholar
  37. 37.
    Zhong J–J, Pan Z-W, Wang Z-Y, Wu J, Chen F, Takagi M, Yoshida T (2002) Effect of mixing time on taxoid production using suspension cultures of Taxus chinensis in a centrifugal impeller bioreactor. J Biosci Bioeng 94(3):244–250. doi: 10.1016/s1389-1723(02)80157-8 CrossRefGoogle Scholar
  38. 38.
    Keßler M, ten Hoopen HJG, Furusaki S (1999) The effect of the aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enzyme Microb Technol 24(5–6):308–315. doi: 10.1016/S0141-0229(98)00121-5 CrossRefGoogle Scholar
  39. 39.
    Miao G-p, Zhu C-s, Feng J-t, Han J, Song X-W, Zhang X (2013) Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production. Plant Cell Tiss Org 112(1):109–116. doi: 10.1007/s11240-012-0211-0 CrossRefGoogle Scholar
  40. 40.
    Wickremesinhe ERM, Arteca RN (1994) Taxus cell suspension cultures: optimizing growth and production of Taxol. J Plant Physiol 144(2):183–188. doi: 10.1016/S0176-1617(11)80541-9 Google Scholar
  41. 41.
    Ellis DD, Zeldin EL, Brodhagen M, Russin WA, McCown BH (1996) Taxol1 production in nodule cultures of Taxus. J Nat Prod 59(3):246–250. doi: 10.1021/np960104g CrossRefGoogle Scholar
  42. 42.
    Meijer JJ, ten Hoopen HJG, Luyben KCAM, Libbenga KR (1993) Effects of hydrodynamic stress on cultured plant cells: a literature survey. Enzyme Microb Technol 15(3):234–238. doi: 10.1016/0141-0229(93)90143-p CrossRefGoogle Scholar
  43. 43.
    Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59(1–2):39–52. doi: 10.1016/s0168-1656(97)00163-6 CrossRefGoogle Scholar
  44. 44.
    Dunlop EH, Namdev PK, Rosenberg MZ (1994) Effect of fluid shear forces on plant cell suspensions. Chem Eng Sci 49(14):2263–2276. doi: 10.1016/0009-2509(94)e0043-p CrossRefGoogle Scholar
  45. 45.
    Joshi JB, Elias CB, Patole MS (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem Eng J and the Biochem Eng J 62(2):121–141. doi: 10.1016/0923-0467(95)03062-x Google Scholar
  46. 46.
    Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5(2):243–256. doi: 10.1021/mp7001494 CrossRefGoogle Scholar
  47. 47.
    White S, McIntyre M, Berry DR, McNeil B (2002) The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22(1):1–14CrossRefGoogle Scholar
  48. 48.
    Eslahpazir Esfandabadi M, Wucherpfennig T, Krull R (2012) Agitation induced mechanical stress in stirred tank bioreactors-linking CFD simulations to fungal morphology. J Chem Eng Jpn 45(9):742–748CrossRefGoogle Scholar
  49. 49.
    Mahnke EU, Büscher K, Hempel DC (2000) A novel approach for the determination of mechanical stresses in gas-liquid reactors. Chem Eng Technol 23(6):509–513CrossRefGoogle Scholar
  50. 50.
    Pilz RD, Hempel DC (2005) Mechanical stress on suspended particles in two- and three-phase airlift loop reactors and bubble columns. Chem Eng Sci 60(22):6004–6012. doi: 10.1016/j.ces.2005.04.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Wucherpfennig
    • 1
  • Annika Schulz
    • 1
  • Jaime Arturo Pimentel
    • 2
  • Gabriel Corkidi
    • 2
  • Dominik Sieblitz
    • 3
  • Matthias Pump
    • 3
  • Gilbert Gorr
    • 3
  • Kai Schütte
    • 3
  • Christoph Wittmann
    • 1
  • Rainer Krull
    • 1
  1. 1.Institute of Biochemical EngineeringTechnische Universität BraunschweigBrunswickGermany
  2. 2.Image Analysis Laboratory, Institute of BiotechnologyUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico
  3. 3.Phyton Biotech GmbHAhrensburgGermany

Personalised recommendations