Advertisement

Bioprocess and Biosystems Engineering

, Volume 37, Issue 8, pp 1497–1505 | Cite as

Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria

  • Érika Cristina Francisco
  • Telma Teixeira Franco
  • Roger Wagner
  • Eduardo Jacob-LopesEmail author
Original Paper

Abstract

Glucose is the substrate most widely used as exogenous carbon source for heterotrophic cultivation of cyanobacteria. Due to limited information about the use of different carbohydrates as carbon sources to support cyanobacterial heterotrophic metabolism, the objective of this work was to evaluate different monosaccharides (arabinose, fructose, galactose, glucose, mannose and xylose), disaccharides (lactose, maltose, sucrose and trehalose) and polysaccharides (carboxymethylcellulose, cassava starch, Hi-maize®, maltodextrin Corn Globe 1805® and xylan) as exogenous carbon source for heterotrophic culture of cyanobacterium Phormidium sp. The batch cultivation using fructose as organic carbon source resulted in the highest (p < 0.05) cell biomass (5,540 mg/L) in parallel with the highest (p < 0.05) substrate yield coefficient (0.67 mgbiomass/mgfructose). Mannose was the carbon source with the highest (p < 0.05) substrate consumption rate (3,185.7 mg/L/day) and maltodextrin was the carbohydrate with major potential to produce biomass (1,072.8 mgbiomass/L/day) and lipids (160.8 mglipids/L/day). Qualitatively, the fatty acid profiles of the lipid extract from Phormidium sp. showed predominance of saturated chains for the cultures grown with most of the carbon sources, with the exception of the ones grown with xylose and maltodextrin.

Keywords

Microalgae/cyanobacteria Heterotrophic metabolism Carbohydrates 

Notes

Acknowledgments

Funding for this research was provided by São Paulo Research Foundation (FAPESP, Brazil).

References

  1. 1.
    Queiroz MI, Hornes MO, Silva-Manetti AG, Jacob-Lopes E (2011) Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater. Appl Energy 88:3438–3443CrossRefGoogle Scholar
  2. 2.
    Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36CrossRefGoogle Scholar
  3. 3.
    Smith AJ (1982) In: Carr NG, Whitton BA (eds) Modes of cyanobacterial carbon metabolism. The biology of cyanobacteria. University of California Press, BerkeleyGoogle Scholar
  4. 4.
    Fay P (1983) The Blue–Greens (CyanophytaCyanobacteria). In: Edward Arnold (ed) The Institute of Biology’s, Studies in Biology, no 160Google Scholar
  5. 5.
    Perez-Garcia O, Bashan Y, Puente ME (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47:190–199CrossRefGoogle Scholar
  6. 6.
    Lee YK (2004) Algal nutrition. Heterotrophic carbon nutrition. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Publishing, OxfordGoogle Scholar
  7. 7.
    Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29:437–460CrossRefGoogle Scholar
  8. 8.
    Al-Thukair AA, Abed RMM, Mohamed L (2007) Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar Pollut Bull 54:173–179CrossRefGoogle Scholar
  9. 9.
    Cañizares-Villanueva RO, Ramos A, Lemus R, Gomez-Lojero C, Travieso L (1994) Growth of Phormidium sp. in aerobic secondary piggery wastewater. Appl Microbiol Biotechnol 42:487–491CrossRefGoogle Scholar
  10. 10.
    Guiry MD, Guiry, GM (2013) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org searched on October 2013
  11. 11.
    Rippka R, Derueles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61CrossRefGoogle Scholar
  12. 12.
    APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. Prot City Press, BaltimoreGoogle Scholar
  13. 13.
    Bligh EG, Dyer JW (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phisiol 37:911–917CrossRefGoogle Scholar
  14. 14.
    Hartman L, Lago RCA (1976) A rapid determination of fatty acid methyl esters from lipids. Lab Prat 22:475–476Google Scholar
  15. 15.
    StatSoft, Inc. (2004) STATISTICA for Windows (Computer program manual). http://www.statsoftinc.com
  16. 16.
    Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue–green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401CrossRefGoogle Scholar
  17. 17.
    Knowles VL, Plaxton WC (2003) From genome to enzyme: analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 44:758–763CrossRefGoogle Scholar
  18. 18.
    Wolk CP, Shaffer PW (1976) Heterotrophic micro- and macrocultures of a nitrogen-fixing cyanobacterium. Arch Microbiol 100:145–147CrossRefGoogle Scholar
  19. 19.
    Raboy B, Padan E (1978) Active transport of glucose and α-methylglucoside in the cyanobacterium Plectonema boryanum. J Biol Chem 253:3287–3291Google Scholar
  20. 20.
    Hong SJ, Lee CG (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12:165–173CrossRefGoogle Scholar
  21. 21.
    Osanai T, Kanesaki Y, Nakano T, Takahashi H, Asayama M, Shirai M, Kanehisa M, Suzuki I, Murata N, Tanaka K (2005) Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the Group 2 factor SigE. J Biol Chem 35:30653–30659CrossRefGoogle Scholar
  22. 22.
    Fuchs B, Suttner P, Sterner S, Wastlhuber R, Loos E (1994) Disproportionating transglycosylase (d-enzyme) in green algae and cyanobacteria. Partial purification and characterization. Zeitschrift für Naturforschung 49:163–170Google Scholar
  23. 23.
    Reyes-Sosa FM, Molina-Heredia FP, De la Rosa MA (2010) A novel α-amylase from the cyanobacterium Nostoc sp. PCC 7119. Appl Microbiol Biotechnol 86:131–141CrossRefGoogle Scholar
  24. 24.
    Gupta V, Natarajan C, Kumar K, Prasanna R (2011) Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa (Cyanobacteria). J Appl Phycol 23:73–81CrossRefGoogle Scholar
  25. 25.
    Wood T (1885) The pentose phosphate pathway. Academic Press Inc, OrlandoGoogle Scholar
  26. 26.
    Pearce J, Carr NG (1969) The incorporation and metabolism of glucose by Anabaena variabilis. J Gen Microbiol 54:451–462CrossRefGoogle Scholar
  27. 27.
    Pelroy RA, Basshan JA (1972) Photosynthetic and dark carbon metabolism in unicellular blue–green algae. Archiv für Mikrobiologie 86:25–38CrossRefGoogle Scholar
  28. 28.
    van den Hoek C, Mann DG, Jahns HM (1995) Algae—an introduction to phycology. Press Sindicate of the University of Cambridge, New YorkGoogle Scholar
  29. 29.
    Li XF, Xu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771CrossRefGoogle Scholar
  30. 30.
    Lu Y, Zhai Y, Liu M, Wu Q (2010) Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol 22:573–578CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Érika Cristina Francisco
    • 1
  • Telma Teixeira Franco
    • 1
  • Roger Wagner
    • 2
  • Eduardo Jacob-Lopes
    • 2
    Email author
  1. 1.School of Chemical Engineering, University of Campinas, UNICAMPCampinasBrazil
  2. 2.Food Science and Technology DepartmentFederal University of Santa Maria, UFSMSanta MariaBrazil

Personalised recommendations