Bioprocess and Biosystems Engineering

, Volume 37, Issue 7, pp 1271–1287 | Cite as

Activated sludge model 2d calibration with full-scale WWTP data: comparing model parameter identifiability with influent and operational uncertainty

  • Vinicius Cunha Machado
  • Javier Lafuente
  • Juan Antonio Baeza
Original Paper


The present work developed a model for the description of a full-scale wastewater treatment plant (WWTP) (Manresa, Catalonia, Spain) for further plant upgrades based on the systematic parameter calibration of the activated sludge model 2d (ASM2d) using a methodology based on the Fisher information matrix. The influent was characterized for the application of the ASM2d and the confidence interval of the calibrated parameters was also assessed. No expert knowledge was necessary for model calibration and a huge available plant database was converted into more useful information. The effect of the influent and operating variables on the model fit was also studied using these variables as calibrating parameters and keeping the ASM2d kinetic and stoichiometric parameters, which traditionally are the calibration parameters, at their default values. Such an “inversion” of the traditional way of model fitting allowed evaluating the sensitivity of the main model outputs regarding the influent and the operating variables changes. This new approach is able to evaluate the capacity of the operational variables used by the WWTP feedback control loops to overcome external disturbances in the influent and kinetic/stoichiometric model parameters uncertainties. In addition, the study of the influence of operating variables on the model outputs provides useful information to select input and output variables in decentralized control structures.


ASM2d EBPR FIM Full-scale WWTP Calibration Influent characterization Modelling 



Anaerobic, anoxic and aerobic (WWTP configuration)


Activated sludge models


Biological oxygen demand (5 days)


Calibration cost function


Chemical oxygen demand


Dissolved oxygen


Enhanced biological phosphorus removal


Fisher information matrix


Glycogen accumulating organisms


International Water Association


Phosphorus accumulating organisms


Preliminary calibration cost function


Proportional-integral-derivative controller


Ratio of normalized D to modified E criteria from FIM


Sludge retention time


Total Kjeldahl nitrogen


Total nitrogen


Total suspended solids


Validation cost function


Wastewater treatment plant


Water Environment Research Foundation



The authors greatly acknowledge to Ricard Tomas and Ana Lupón (Aigües de Manresa S.A.) all the support provided in conducting this work. Vinicius Cunha Machado has received a Pre-doctoral scholarship of the AGAUR (Agència de Gestió d’Ajuts Universitaris i Recerca, Catalonia, Spain), inside programs of the European Community Social Fund. This work was supported by the Spanish Ministerio de Economía y Competitividad (CTM2010-20384). The authors are members of the GENOCOV research group (Grup de Recerca Consolidat de la Generalitat de Catalunya, 2009 SGR 815).

Supplementary material

449_2013_1099_MOESM1_ESM.doc (166 kb)
Supplementary material 1 (DOC 167 kb)


  1. 1.
    Jeppsson U (1996) Modelling aspects of wastewater treatment processes. PhD thesis, Lund Institute of Technology, Sweden.
  2. 2.
    Yuan Z, Bogaert H, Leten J, Verstraete W (2000) Reducing the size of a nitrogen removal activated sludge plant by shortening the retention time of inert solids via sludge storage. Water Res 34:539–549CrossRefGoogle Scholar
  3. 3.
    Henze M, Grady Jr. CPL, Gujer W, Marais GR, Matsuo T (1987) Activated sludge model no. 1, IAWQ scientific and technical report no. 1. IWAQ, LondonGoogle Scholar
  4. 4.
    Meijer SCF, van Loosdrecht MCM, Heijnen JJ (2002) Modelling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP. Water Res 36:4667–4682CrossRefGoogle Scholar
  5. 5.
    Henze M, Gujer W, Mino T, van Loosdrecht MCM (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3: scientific and technical report no. 9. IWA Publishing, LondonGoogle Scholar
  6. 6.
    Trutnau M, Petzold M, Mehlig L, Eschenhagen M, Geipel K, Müller S, Bley T, Röske I (2011) Using a carbon-based ASM3 EAWAG Bio-P for modelling the enhanced biological phosphorus removal in anaerobic/aerobic activated sludge systems. Bioprocess Biosyst Eng 34:287–295CrossRefGoogle Scholar
  7. 7.
    Ferrer J, Morenilla JJ, Bouzas A, García-Usach F (2004) Calibration and simulation of two large wastewater treatment plants operated for nutrient removal. Water Sci Technol 50:87–94Google Scholar
  8. 8.
    Ingildsen P, Rosen C, Gernaey KV, Nielsen MK, Guildal T, Jacobsen BN (2006) Modelling and control strategy testing of biological and chemical phosphorus removal at Avedøre WWTP. Water Sci Technol 53:105–113CrossRefGoogle Scholar
  9. 9.
    Xie W-M, Zhang R, Li W-W, Ni B-J, Fang F, Sheng G-P, Yu H-Q, Song J, Le D-Z, Bi X-J, Liu C-Q, Yang M (2011) Simulation and optimization of a full-scale Carrousel oxidation ditch plant for municipal wastewater treatment. Biochem Eng J 56:9–16CrossRefGoogle Scholar
  10. 10.
    García-Usach F, Ferrer J, Bouzas A, Seco A (2006) Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant. Water Sci Technol 53:199–206CrossRefGoogle Scholar
  11. 11.
    Machado VC, Tapia G, Gabriel D, Lafuente J, Baeza JA (2009) Systematic identifiability study based on the Fisher information matrix for reducing the number of parameters calibration of an activated sludge model. Environ Model Softw 24:1274–1284CrossRefGoogle Scholar
  12. 12.
    Olsson G (2006) Instrumentation, control and automation in the water industry—state-of-the-art and new challenges. Water Sci Technol 53:1–16CrossRefGoogle Scholar
  13. 13.
    Copp JB, Spanjers H, Vanrolleghem PA (2002) Respirometry in control of the activated sludge process: benchmarking control strategies. Scientific and technical report no. 11. IWA PublishingGoogle Scholar
  14. 14.
    Vrecko D, Hvala N, Stare A, Burica O, Strazar M, Levstek M, Cerar P, Podbevsek S (2006) Improvement of ammonia removal in activated sludge process with feedforward-feedback aeration controllers. Water Sci Technol 53:125–132CrossRefGoogle Scholar
  15. 15.
    Samuelsson P, Carlsson B (2001) Feed-forward control of the external carbon flow rate in an activated sludge process. Water Sci Technol 43:115–122Google Scholar
  16. 16.
    Ayesa E, De La Sota A, Grau P, Sagarna JM, Salterain A, Suescun J (2006) Supervisory control strategies for the new WWTP of Galindo-Bilbao: the long run from the conceptual design to the full-scale experimental validation. Water Sci Technol 53:193–201CrossRefGoogle Scholar
  17. 17.
    Orhon D, Artan N, Ates E (1994) A description of three methods for the determination of the initial inert particulate chemical oxygen demand of wastewater. J Chem Technol Biotechnol 61:73–80CrossRefGoogle Scholar
  18. 18.
    Sin G, Van Hulle SWH, De Pauw DJW, van Griensven A, Vanrolleghem PA (2005) A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis. Water Res 39:2459–2474CrossRefGoogle Scholar
  19. 19.
    Ruano MV, Ribes J, De Pauw DJW, Sin G (2007) Parameter subset selection for the dynamic calibration of activated sludge models (ASMs): experience versus systems analysis. Water Sci Technol 56:107–115CrossRefGoogle Scholar
  20. 20.
    Hulsbeek JJW, Kruit J, Roeleveld PJ, van Loosdrech MCM (2002) A practical protocol for dynamic modelling of activated sludge systems. Water Sci Technol 45:127–136Google Scholar
  21. 21.
    Vanrolleghem PA, Insel G, Petersen B, Sin G, De Pauw D, Nopens I, Dovermann H, Weijers S, Gernaey K (2003) A comprehensive model calibration procedure for activated sludge. WEFTEC 76th annual technical exhibition conference water environment federation, Los Angeles, pp 210–237Google Scholar
  22. 22.
    Melcer H, Dold PL, Jones RM, Bye CM, Takacs I, Stensel HD, Wilson AW, Sun P, Bury S (2003) Methods for wastewater characterization in activated sludge modelling. Water Environment Research Foundation (WERF), AlexandriaGoogle Scholar
  23. 23.
    Langergraber G, Rieger L, Winkler S, Alex J, Wiese J, Owerdieck C, Ahnert M, Simon J, Maurer M (2004) A guideline for simulation studies of wastewater treatment plants. Water Sci Technol 50:131–138Google Scholar
  24. 24.
    Cosenza A, Mannina G, Neumann MB, Viviani G, Vanrolleghem PA (2013) Biological nitrogen and phosphorus removal in membrane bioreactors: model development and parameter estimation. Bioprocess Biosyst Eng 36:499–514CrossRefGoogle Scholar
  25. 25.
    Mannina G, Cosenza A, Vanrolleghem PA, Viviani G (2011) A practical protocol for calibration of nutrient removal wastewater treatment models. J Hydroinformatics 13:575–595CrossRefGoogle Scholar
  26. 26.
    Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process—a framework and guidance. Environ Model Softw 22:1543–1556CrossRefGoogle Scholar
  27. 27.
    Sin G, Gernaey KV, Neumann MB, Van Loosdrecht MCM, Gujer W (2009) Uncertainty analysis in WWTP model applications: a critical discussion using an example from design. Water Res 43:2894–2906CrossRefGoogle Scholar
  28. 28.
    Cierkens K, Plano S, Benedetti L, Weijers S, de Jonge J, Nopens I (2012) Impact of influent data frequency and model structure on the quality of WWTP model calibration and uncertainty. Water Sci Technol 65:233–242CrossRefGoogle Scholar
  29. 29.
    Mannina G, Cosenza A, Viviani G (2012) Uncertainty assessment of a model for biological nitrogen and phosphorus removal: application to a large wastewater treatment plant. Phys Chem Earth, Parts A/B/C 42–44:61–69CrossRefGoogle Scholar
  30. 30.
    Benedetti L, Batstone DJ, De Baets B, Nopens I, Vanrolleghem PA (2012) Uncertainty analysis of WWTP control strategies made feasible. Water Qual Res J Can 47:14CrossRefGoogle Scholar
  31. 31.
    Belia E, Amerlinck Y, Benedetti L, Johnson B, Sin G, Vanrolleghem PA, Gernaey KV, Gillot S, Neumann MB, Rieger L, Shaw A, Villez K (2009) Wastewater treatment modelling: dealing with uncertainties. Water Sci Technol 60:1929–1941CrossRefGoogle Scholar
  32. 32.
    Takács I, Patry GG, Nolasco D (1991) A dynamic model of the clarification-thickening process. Water Res 25:1263–1271CrossRefGoogle Scholar
  33. 33.
    Orhon D, Artan N (1994) Modelling of activated sludge systems. CRC PressGoogle Scholar
  34. 34.
    Montpart N (2010) Redesign of a dissolved oxygen control system in an urban WWTP. Master in environmental studies. Universitat Autònoma de Barcelona, BarcelonaGoogle Scholar
  35. 35.
    Vangsgaard AK, Mutlu AG, Gernaey KV, Smets BF, Sin G (2013) Calibration and validation of a model describing complete autotrophic nitrogen removal in a granular SBR system. J Chem Technol Biotechnol 88:2007–2015Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vinicius Cunha Machado
    • 1
  • Javier Lafuente
    • 1
  • Juan Antonio Baeza
    • 1
  1. 1.Department of Chemical Engineering, Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations