Advertisement

Bioprocess and Biosystems Engineering

, Volume 37, Issue 5, pp 931–941 | Cite as

Microscale methods to rapidly evaluate bioprocess options for increasing bioconversion yields: application to the ω-transaminase synthesis of chiral amines

  • Murni Halim
  • Leonardo Rios-Solis
  • Martina Micheletti
  • John M. Ward
  • Gary J. Lye
Original Paper

Abstract

This work aims to establish microscale methods to rapidly explore bioprocess options that might be used to enhance bioconversion reaction yields: either by shifting unfavourable reaction equilibria or by overcoming substrate and/or product inhibition. As a typical and industrially relevant example of the problems faced we have examined the asymmetric synthesis of (2S,3R)-2-amino-1,3,4-butanetriol from l-erythrulose using the ω-transaminase from Chromobacterium violaceum DSM30191 (CV2025 ω-TAm) and methylbenzylamine as the amino donor. The first process option involves the use of alternative amino donors. The second couples the CV2025 ω-TAm with alcohol dehydrogenase and glucose dehydrogenase for removal of the acetophenone (AP) by-product by in situ conversion to (R)-1-phenylethanol. The final approaches involve physical in-situ product removal methods. Reduced pressure conditions, attained using a 96-well vacuum manifold were used to selectively increase evaporation of the volatile AP while polymeric resins were also utilised for selective adsorption of AP from the bioconversion medium. For the particular reaction studied here the most promising bioprocess options were use of an alternative amino donor, such as isopropylamine, which enabled a 2.8-fold increase in reaction yield, or use of a second enzyme system which achieved a 3.3-fold increase in yield.

Keywords

ω-Transaminase Asymmetric synthesis Microscale bioprocessing Equilibrium-controlled reaction Product inhibition 

Abbreviations

ABT

(2S,3R)-2-Amino-1,3,4-butanetriol

ADH

Alcohol dehydrogenase

AP

Acetophenone

AQC

6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate

Ery

l-Erythrulose

GDH

Glucose dehydrogenase

IPA

Isopropylamine

IPTG

Isopropyl β-d-1-thiogalactopyranoside

ISPR

In situ product removal

IScPR

In situ co-product removal

MBA

S-Methylbenzylamine

PLP

Pyridoxal 5′ phosphate

TFA

Trifluoroacetic acid

U

Units of enzyme activity (μmol min−1)

Notes

Acknowledgments

The Ministry of Higher Education of Malaysia (MOHE) and The Mexican National Council for Science and Technology (CONACYT) are acknowledged for the studentships provided to support MH and LRS, respectively. The UK Engineering and Physical Sciences Research Council (EPSRC) is thanked for the support of the multidisciplinary Biocatalysis Integrated with Chemistry and Engineering (BiCE) programme (GR/S62505/01) at University College London (London, UK). Aspects of the work were also supported by the European Union’s Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 266025 (BIONEXGEN).

References

  1. 1.
    Bea HS, Seo Y-M, Kim B-G, Yun H (2010) Kinetic resolution of α-methylbenzylamine by recombinant Pichia pastoris expressing ω-transaminase. Biotechnol Bioprocess Eng 15(3):429–434CrossRefGoogle Scholar
  2. 2.
    Cohen SA, Michaud DP (1993) Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high performance liquid chromatography. Anal Biochem 211:279–287CrossRefGoogle Scholar
  3. 3.
    Dominik K, Ivan L, Dorina C, David R, Wolfgang K (2008) Asymmetric synthesis of optically pure pharmacologically relevant amines employing ω-transaminases. Adv Synth Catal 350:2761–2766CrossRefGoogle Scholar
  4. 4.
    Du X, Yuan Q, Li Y, Zhou H (2008) Preparative purification of solanesol from tobacco leaf extracts by macroporous resins. Chem Eng Technol 31(1):87–94CrossRefGoogle Scholar
  5. 5.
    Faber K (2004) Biotransformations in organic chemistry. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Guo JL, Mu X-Q, Xu Y (2009) Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate. Bioprocess Biosyst Eng 33(7):797–804CrossRefGoogle Scholar
  7. 7.
    Halim M (2012) Microscale approaches to the design and optimization of equilibrium controlled bioconversions. PhD Thesis, University College London, LondonGoogle Scholar
  8. 8.
    Hilker I, Wohlgemuth R, Alphand V, Furstoss R (2005) Microbial transformations 59: first kilogram scale asymmetric microbial Baeyer–Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92(6):702–710CrossRefGoogle Scholar
  9. 9.
    Hohne M, Kuhl S, Robins K, Bornscheuer UT (2008) Efficient asymmetric synthesis of chiral amines by combining transaminase and pyruvate decarboxylase. ChemBioChem 9:363CrossRefGoogle Scholar
  10. 10.
    Kaulmann U, Smithies K, Smith MEB, Hailes HC, Ward JM (2007) Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme Microb Technol 41:628–637CrossRefGoogle Scholar
  11. 11.
    Koszelewski D, Tauber K, Faber K, Kroutil W (2010) ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol 28:324–332CrossRefGoogle Scholar
  12. 12.
    Lye GJ, Shamlou PA, Baganz F, Dalby PA, Woodley JM (2003) Accelerated design of bioconversion processes using automated microscale technique. Trends Biotechnol 21:1CrossRefGoogle Scholar
  13. 13.
    Lye GJ, Woodley JM (1999) Application of in situ product-removal techniques to biocatalytic processes. Trends Biotechnol 17(10):395–402CrossRefGoogle Scholar
  14. 14.
    Parsons SA, Jarvis PJ, Dixon DW, Sharp E (2007) Treatment of waters with elevated organic content. J Am Water Works AssocGoogle Scholar
  15. 15.
    Rios SL, Halim M, Cázare A, Morris P, Ward JM, Hailes H, Dalby PA, Baganz F, Lye GJ (2011) A microscale toolbox for rapid evaluation of multi-step enzymatic syntheses comprising a mix and match E. coli expression system. Biocatal Biotransform 29(5):192–203CrossRefGoogle Scholar
  16. 16.
    Rios SL, Bayir N, Halim M, Du C, Ward JM, Baganz F, Lye GJ (2013) Non-linear kinetic modelling of reversible bioconversions: application to the transaminase catalysed synthesis of chiral amino-alcohols. Biochem Eng J 73:38–48CrossRefGoogle Scholar
  17. 17.
    Rudroff F, Alphand V, Furstoss R, Mihovilovic MD (2006) Optimizing fermentation conditions of recombinant Escherichia coli expressing cyclopentanone monooxygenase. Org Process Res Dev 10:599–604CrossRefGoogle Scholar
  18. 18.
    Shin JS, Kim BG (2009) Transaminase-catalyzed asymmetric synthesis of l-2-aminobutyric acid from achiral reactants. Biotechnol Lett 31(10):1595–1599CrossRefGoogle Scholar
  19. 19.
    Shin JS, Kim BG (2002) Substrate inhibition mode of w-transaminase from Vibrio fluvialis JS17 is dependent on the chirality of substrate. Biotechnol Bioeng 77(7):832–837CrossRefGoogle Scholar
  20. 20.
    Shin JS, Kim BG (2001) Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines. Biosci Biotechnol Biochem 65:1782–1788CrossRefGoogle Scholar
  21. 21.
    Shin JS, Kim BG, Liese A, Wandrey C (2001) Kinetic resolution of chiral amines with ω-transaminase using an enzyme-membrane reactor. Biotechnol Bioeng 73(3):179–187CrossRefGoogle Scholar
  22. 22.
    Smith MEB, Chen BH, Hibbert EG, Kaulmann U, Smithies K, Galman JL, Baganz F, Dalby PA, Hailes HC, Lye GJ, Ward JM, Woodley JM, Micheletti M (2010) A multidisciplinary approach toward the rapid and preparative-scale biocatalytic synthesis of chiral amino alcohols: a concise transketolase-/ω-transaminase-mediated synthesis of (2S,3S)-2-aminopentane-1,3-diol. Org Process Res Dev 14:99–107CrossRefGoogle Scholar
  23. 23.
    Sutin L, Anderson S, Bergquist L, Castro VM, Danielsson E, James S, Henriksson M, Johansson L, Kaiser C, Flyren K, Williams M (2007) Oxazolones as potent inhibitors of 11β-hydroxysteroid dehydrogenase type 1. Bioorg Med Chem Lett 17:4837–4840CrossRefGoogle Scholar
  24. 24.
    Tufvesson P, Ramos JL, Jensen JS, Al-Haque N, Neto W, Woodley JM (2011) Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnol Bioeng 108(7):1479–1493CrossRefGoogle Scholar
  25. 25.
    Truppo MD, Turner NJ (2010) Micro-scale process development of transaminase catalysed reactions. Org Biomol Chem 8:1280–1283CrossRefGoogle Scholar
  26. 26.
    Truppo MD, Rozzell DJ, Moore J, Turner NJ (2009) Rapid screening and scale-up of transaminase catalysed reactions. Org Biomol Chem 7(2):395–398CrossRefGoogle Scholar
  27. 27.
    Vicenzi JT, Zmijewski MJ, Reinhard MR, Landen BE, Muth WL, Marler PG (1997) Large-scale stereoselective enzymatic ketone reduction with in situ product removal via polymeric adsorbent resins. Enzyme Microb Technol 20:495–499CrossRefGoogle Scholar
  28. 28.
    Weckbecker A, Hummel W (2006) Cloning, expression, and characterisation of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatal Biotransform 24(5):380–389CrossRefGoogle Scholar
  29. 29.
    Yang ZH, Zeng R, Chang X, Li X-K, Wang G-H (2008) Toxicity of aromatic ketone to yeast cell and improvement of the asymmetric reduction of aromatic ketone catalysed by yeast cell with the introduction of resin adsorption. Food Technol Biotechnol 46(3):322–327Google Scholar
  30. 30.
    Yang WC, Shim WG, Lee JW, Moon H (2003) Adsorption and desorption dynamics of amino acids in a non-ionic polymeric sorbent XAD-16 column. Korean J Chem Eng 20(5):922–929CrossRefGoogle Scholar
  31. 31.
    Yun H, Kim J, Kinnera K, Kim BG (2005) Synthesis of enatiomerically pure trans-(1R,2R)-and cis-(1S, 2R)-1-amino-2-indanol by lipase and ω-transaminase. Biotechnol Bioeng 93(2):391–395CrossRefGoogle Scholar
  32. 32.
    Yun H, Cho B-K, Kim B-G (2004) Kinetic resolution of (R, S)-sec-butylamine using omega-transaminase from Vibrio fluvialis JS17 under reduced pressure. Biotechnol Bioeng 87(6):772–778CrossRefGoogle Scholar
  33. 33.
    Yun H, Hun Y, Cho B-K, Hwang B-Y, Kim B-G (2003) Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-α-methylbenzylamine from racemic α-methylbenzylamine using ω-transaminase/alcohol dehydrogenase/glucose dehydrogenase coupling reaction. Biotechnol Lett 25:809–814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Murni Halim
    • 1
    • 2
  • Leonardo Rios-Solis
    • 1
  • Martina Micheletti
    • 1
  • John M. Ward
    • 1
  • Gary J. Lye
    • 1
  1. 1.Department of Biochemical Engineering, The Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUK
  2. 2.Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations