Bioprocess and Biosystems Engineering

, Volume 36, Issue 3, pp 345–355 | Cite as

Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors

  • Stefan Hindersin
  • Marco Leupold
  • Martin Kerner
  • Dieter Hanelt
Original Paper


Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m−2 d−1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m−2 d−1 (by rotation out of direct irradiance) to 79 mol photons m−2 d−1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L−1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m−2 s−1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L−1), the culture was irradiated up to 2,000 μmol photons m−2 s−1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons−1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.


Solar tracked photobioreactors Photoinhibition Outdoor cultivation Microalgae Temperature and irradiance control Flue gas 



Biomass concentration, cell dry weight [g L−1]


Effective quantum yield of photosynthesis


Maximum quantum yield of photosystem (PS) II


Optical light path [mm]


Photosynthetic active radiation (μmol photons m−2 s−1, 400–700 nm); horizontal PAR (PAR absorbed by a horizontal plane)




Photosystem II



Special thanks are dedicated to Ines Krohn, Institute of Microbiology, University of Hamburg for the genetic identification of Scenedesmus obliquus. Many thank to Dirk Warnecke for critical reading and comments of the manuscript. We also like to thank the staff of E.ON Hanse for their support to this study. The study was funded by the Federal Ministry of Economy and Technology.


  1. 1.
    Benemann JR, Tillett DM, Weissman JC (1987) Microalgae biotechnology. Trends in Biotechnology 5:47–53CrossRefGoogle Scholar
  2. 2.
    Cohen Z (1999) Chemicals from microalgae. Taylor & Francis, London; Philadelphia PAGoogle Scholar
  3. 3.
    Skulberg OM (2000) Microalgae as a source of bioactive molecules—experience from cyanophyte research. J Appl Phycol 12:341–348CrossRefGoogle Scholar
  4. 4.
    Pulz O, Scheibenbogen K, Groß W (2008) Biotechnology with cyanobacteria and microalgae. Wiley-VCH Verlag GmbH, WeinhamGoogle Scholar
  5. 5.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65:635–648CrossRefGoogle Scholar
  6. 6.
    Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88CrossRefGoogle Scholar
  7. 7.
    Walker D (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517CrossRefGoogle Scholar
  8. 8.
    Cooney MJ, Young G, Pate R (2011) Bio-oil from photosynthetic microalgae: case study. Bioresour Technol 102:166–177CrossRefGoogle Scholar
  9. 9.
    Suh I, Lee C-G (2003) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8:313–321CrossRefGoogle Scholar
  10. 10.
    Grobbelaar J (2009) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21:489–492CrossRefGoogle Scholar
  11. 11.
    Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. In: R. Osinga JTJGB, Wijffels RH, (eds) Progress in Industrial Microbiology. ElsevierGoogle Scholar
  12. 12.
    Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301CrossRefGoogle Scholar
  13. 13.
    Sanchez JLG, Perez JAS, Camacho FG, Sevilla JMF, Grima EM (1996) Optimization of light and temperature for growing Chlorella sp using response surface methodology. Biotechnol Tech 10:329–334Google Scholar
  14. 14.
    Vonshak A, Guy R (1992) Photoadaptation, photoinhibition and productivity in the blue-green alga, Spirulina platensis grown outdoors. Plant Cell Environ 15:613–616CrossRefGoogle Scholar
  15. 15.
    Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour Technol 102:5129–5137CrossRefGoogle Scholar
  16. 16.
    Carvalho A, Silva S, Baptista J, Malcata F (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288CrossRefGoogle Scholar
  17. 17.
    Grobbelaar J (2010) Microalgal biomass production: challenges and realities. Photosynth Res 106:135–144CrossRefGoogle Scholar
  18. 18.
    Zou N, Richmond A (1999) Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. J Biotechnol 70:351–356CrossRefGoogle Scholar
  19. 19.
    Kliphuis AM, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696CrossRefGoogle Scholar
  20. 20.
    Lee Y-K, Low C-S (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol Bioeng 38:995–1000CrossRefGoogle Scholar
  21. 21.
    Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662CrossRefGoogle Scholar
  22. 22.
    Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  23. 23.
    Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol 102:6687–6695CrossRefGoogle Scholar
  24. 24.
    Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210CrossRefGoogle Scholar
  25. 25.
    Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504CrossRefGoogle Scholar
  26. 26.
    Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  27. 27.
    Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266CrossRefGoogle Scholar
  28. 28.
    Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317CrossRefGoogle Scholar
  29. 29.
    Vonshak A, Guy R, Poplawsky R, Ohad I (1988) Photoinhibition and its recovery in two strains of the cyanobacterium Spirulina platensis. Plant Cell Physiol 29:721–726Google Scholar
  30. 30.
    Lu C, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359CrossRefGoogle Scholar
  31. 31.
    Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104:352–359CrossRefGoogle Scholar
  32. 32.
    Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87CrossRefGoogle Scholar
  33. 33.
    Qiang H, Richmond A (1996) Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol 8:139–145CrossRefGoogle Scholar
  34. 34.
    Matthijs HCP, Balke H, VanHes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107CrossRefGoogle Scholar
  35. 35.
    Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  36. 36.
    Pruvost J, Cornet JF, Goetz V, Legrand J (2012) Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis. Biotechnol Progr Google Scholar
  37. 37.
    Torzillo G, Accolla P, Pinzani E, Masojidek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291CrossRefGoogle Scholar
  38. 38.
    Mayo AW (1997) Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris cultures containing bacteria. Water Environ Res 69:64–72CrossRefGoogle Scholar
  39. 39.
    Hanelt D, Wiencke C, Bischof K (2003) Photosynthesis in marine macroalgae, photosynthesis in algae. In: Larkum WA, Douglas E, Raven JA (eds) Advances in photosynthesis and respiration, vol 14. Kluwer Academic Publisher, pp 413–435Google Scholar
  40. 40.
    Masojídek J, Papáček Š, Sergejevová M, Jirka V, Červený J, Kunc J, Korečko J, Verbovikova O, Kopecký J, Štys D, Torzillo G (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15:239–248CrossRefGoogle Scholar
  41. 41.
    Masojídek J, Sergejevová M, Rottnerová K, Jirka V, Korečko J, Kopecký J, Zaťková I, Torzillo G, Štys D (2009) A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J Appl Phycol 21:55–63CrossRefGoogle Scholar
  42. 42.
    Petkov G, Ivanova A, Iliev I, Vaseva I (2012) A critical look at the microalgae biodiesel. Eur J Lipid Sci Technol 114:103–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stefan Hindersin
    • 1
    • 2
  • Marco Leupold
    • 1
    • 2
  • Martin Kerner
    • 2
  • Dieter Hanelt
    • 1
  1. 1.Department of Cell Biology and PhycologyUniversity of HamburgHamburgGermany
  2. 2.Strategic Science Consult SSC LtdHamburgGermany

Personalised recommendations