Advertisement

Bioprocess and Biosystems Engineering

, Volume 35, Issue 7, pp 1193–1200 | Cite as

Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source

  • Belem Flores-Albino
  • Ladislao Arias
  • Jorge Gómez
  • Alberto Castillo
  • Miquel Gimeno
  • Keiko ShiraiEmail author
Original Paper

Abstract

Crab wastes are employed for simultaneous production of chitin and L(+)-lactic acid by submerged fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Response surface methodology was applied to design the culture media considering demineralization. Fermentations in stirred tank reactor (2L) using selected conditions produced 88% demineralization and 56% deproteinization with 34% yield of chitin and 19.5 gL−1 of lactic acid (77% yield). The chitin purified from fermentation displayed 95% degree of acetylation and 0.81 and 1 ± 0.125% of residual ash and protein contents, respectively.

Keywords

Chitin Lactic acid Lactic acid bacteria Crab wastes Sugar cane Molasses 

Notes

Acknowledgments

We would like to thank to Institute of Science and Technology of Mexico City (ICyTDF No. PICSA11-69) for funding and to CONACYT (Government of Mexico) for scholarship (BFA).

Supplementary material

449_2012_706_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (DOC 140 kb)

References

  1. 1.
    Robinson-Lora MA, Brennan RA (2009) The use of crab-shell chitin for biological denitrification: batch and column tests. Bioresour Technol 100:534–541CrossRefGoogle Scholar
  2. 2.
    Muralidhara HS, Maggin B (1985) Chitin from crab waste: separation of component fractions by physical means. Resour Conserv 11:273–278CrossRefGoogle Scholar
  3. 3.
    Abdullin VF, Artemenko SE, Ovchinnnikova GP, Arzamastsev OS (2008) Extraction processes in extraction of the biopolymer chitin from crab shells. Fibre Chem 40:513–516CrossRefGoogle Scholar
  4. 4.
    Shirai K, Guerrero I, Huerta S, Saucedo G, Castillo A, Gonzalez RO, Hall GM (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microb Tech 28:446–452CrossRefGoogle Scholar
  5. 5.
    Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for Ch recovery. Process Biochem 37:1359–1366CrossRefGoogle Scholar
  6. 6.
    Oh KT, Kim YJ, Nguyen VN, Jung WJ, Park RD (2007) Demineralization of crab shell waste by Peudomonas aeruginosa F722. Process Biochem 42:1069–1074CrossRefGoogle Scholar
  7. 7.
    Choorit W, Patthanamanee W, Manurakchinakorn S (2008) Use of response surface method for the determination of demineralization efficiency in fermented shrimp shells. Bioresour Technol 99:6168–6173CrossRefGoogle Scholar
  8. 8.
    Pacheco N, Garnica M, Ramírez J, Flores B, Gimeno M, Bárzana E, Shirai K (2009) Effect of temperature on chtin and astaxanthin recoveries from shrimp waste using lactic acid bacteria. Bioresour Technol 100:2849–2854CrossRefGoogle Scholar
  9. 9.
    Jung WJ, Jo GH, Kuk JH, Kim YJ, Oh KT, Park RD (2006) Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohyd Polym 68:746–750CrossRefGoogle Scholar
  10. 10.
    Gimeno M, Ramírez-Hernández JY, Mártinez-Ibarra C, Pacheco N, García-Arrazola R, Bárzana E, Shirai K (2007) One-solvent extraction of astaxanthin from lactic acid fermented shrimp wastes. J Agric Food Chem 55:10345–10350CrossRefGoogle Scholar
  11. 11.
    Wee Y, Kim J, Yun J, Ryu H (2004) Utilization of sugar molasses for economical L(+) lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme Microb Tech 35:568–573CrossRefGoogle Scholar
  12. 12.
    Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids expanding the markets. Trends Biotechnol 26:218–224CrossRefGoogle Scholar
  13. 13.
    Takahashi S, Ebisu H, Hirose T, Sano M, Nishimura M, Hirai K, Tsukamoto T, Hosaka M (2000) Bactericidal activity of gatifloxacin (AM-1155) against Pseudomonas aeruginosa and Enterococcus faecalis in an in vitro bladder model simulating human urinary concentrations after oral administration. Chemotherapy 46(2):122–128CrossRefGoogle Scholar
  14. 14.
    Ruiz-Sánchez R, Cruz-Camarillo R, Salcedo-Hernández R, Barboza-Corona JE (2005) Chitinases from Serratia marcescens Nima. Biotechnol Lett 27:649–653CrossRefGoogle Scholar
  15. 15.
    A.O.A.C. (1980) Official methods of analyses of the association of official analytical chemists. Association of Official Analytical Chemists, Washington, DCGoogle Scholar
  16. 16.
    Black MM, Schwartz AM (1950) The estimation of chitin and chitin nitrogen in crawfish waste and derived products. Analyst 75:185–189CrossRefGoogle Scholar
  17. 17.
    Dubois M, Gillies K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for the determination of sugar and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  18. 18.
    Bas D, Boyaci IH (2005) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845CrossRefGoogle Scholar
  19. 19.
    Kasaai MR, Arul J, Charlet G (2000) Intrinsic viscosity-molecular weight relationship for chitosan. J Polym Sci Pol Phys 38:2591–2598CrossRefGoogle Scholar
  20. 20.
    Ramírez-Ramírez JC, Huerta S, Arias L, Prado A, Shirai K (2008) Utilization of fisheries by catch and processing wastes for lactic acid fermented silage and evaluation of degree of protein hydrolysis and in vitro digestibility. Rev Mex Ing Quím 7:1–10Google Scholar
  21. 21.
    Bucar F, Ninov S, Lonkova I, Kartnig T, Schubert ZM, Asenov I, Konuklugil B, Roukas T (1980) Pretreatment of beet molasses to increase pullulan production. Process Biochem 49:613–617Google Scholar
  22. 22.
    Bhaskar N, Suresh PV, Sakhare PZ, Sachindra NM (2007) Shrimp biowaste with Pediococcus acidolactici CFR2182: optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteinization and carotenoid recovery. Enzyme Microb Tech 40:1427–1434CrossRefGoogle Scholar
  23. 23.
    Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohyd Polym 75:15–21CrossRefGoogle Scholar
  24. 24.
    Rocha-Pino Z, Martinez Piña M, Arias L, Vazquez H, Shirai K (2008) Effect of water quality and particle size on the production of chitosan from β-chitin isolated from jumbo squid processing wastes (Dosidicus gigas). Rev Mex Ing Quim 7(3):299–307Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Belem Flores-Albino
    • 1
  • Ladislao Arias
    • 1
  • Jorge Gómez
    • 1
  • Alberto Castillo
    • 2
  • Miquel Gimeno
    • 3
  • Keiko Shirai
    • 1
    Email author
  1. 1.Laboratory of Biopolymers, Department of BiotechnologyUniversidad Autonoma MetropolitanaMexico CityMexico
  2. 2.Department of MathematicsUniversidad Autonoma MetropolitanaMexico CityMexico
  3. 3.Depto. Alimentos y biotecnología, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico DFMexico

Personalised recommendations