Advertisement

Bioprocess and Biosystems Engineering

, Volume 35, Issue 7, pp 1185–1192 | Cite as

Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains

  • Michele Michelin
  • Maria de Lourdes T. M. Polizeli
  • Denise S. Ruzene
  • Daniel P. Silva
  • Héctor A. Ruiz
  • António A. Vicente
  • João A. Jorge
  • Héctor F. Terenzi
  • José A. Teixeira
Original Paper

Abstract

Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and β-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 °C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of β-xylosidase (96–168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of β-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of β-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of β-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.

Keywords

Xylanase β-xylosidase Autohydrolysis Corncob Fungal strains 

Notes

Acknowledgments

This work was supported by State of Sao Paulo Research Foundation (FAPESP/Brazil), National Counsel of Technological and Scientific Development (CNPq/Brazil), National System for Research on Biodiversity (SISBIOTA-Brazil, CNPq 563260/2010-6/FAPESP 2010/52322-3), and Portuguese Foundation for Science and Technology (FCT/Portugal). Héctor A. Ruiz thanks to Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT grant number: 213592/308679).

References

  1. 1.
    Rojas-Rejón OA, Poggi-Varaldo HM, Ramos-Valdivia AC, Martínez-Jiménez A, Cristiani-Urbina E, Martínez MT, Ponce-Noyola T (2011) Production of cellulases and xylanases under catabolic repression conditions from mutant PR-22 of Cellulomonas flavigena. J Ind Microbiol Biotechnol 38:257–264. doi: 10.1007/s10295-010-0821-7 CrossRefGoogle Scholar
  2. 2.
    Cavka A, Alriksson B, Rose SH, van Zyl WH, Jonsson LJ (2011) Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge. J Ind Microbiol Biotechnol 38:891–899. doi: 10.1007/s10295-010-0856-9 CrossRefGoogle Scholar
  3. 3.
    López G, Bañares-Hidalgo A, Estrada P (2011) Xylanase II from Trichoderma reesei QM 9414: conformational and catalytic stability to chaotropes, trifluoroethanol, and pH changes. J Ind Microbiol Biotechnol 38:113–125. doi: 10.1007/s10295-010-0836-0 CrossRefGoogle Scholar
  4. 4.
    Abdeshahian P, Samat N, Wan Yusoff WM (2010) Production of β-xylosidase by Aspergillus niger FTCC 5003 using palm kernel cake in a packed-bed bioreactor. J Appl Sci 10:419–424. doi: 10.3923/jas.2010.419.424 CrossRefGoogle Scholar
  5. 5.
    Rajoka MI, Riaz S (2005) Hyper-production of a thermotolerant β-xylosidase by a deoxy-d-glucose and cycloheximide resistant mutant derivate of Kluyveromyces marxianus PPY 125. Electron J Biotechnol 8:177–184. doi: 10.2225/vol8-issue2-fulltext-9 CrossRefGoogle Scholar
  6. 6.
    Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179. doi: 10.1016/S1369-703X(02)00129-8 CrossRefGoogle Scholar
  7. 7.
    Mullai P, Fathima NSA, Rene ER (2010) Statistical analysis of main and interaction effects to optimize xylanase production under submerged cultivation conditions. J Agric Sci 2:144–153Google Scholar
  8. 8.
    Nigam PS, Gupta N, Anthwal A (2009) Pretreatment of agro-industrial residues. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues, 1st edn. Springer-Verlag, New York, pp 13–33CrossRefGoogle Scholar
  9. 9.
    Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2004) Production of phenolics from corn cobs by coupling enzymatic treatment and solid state fermentation. Eng Life Sci 4:283–286. doi: 10.1002/elsc.200420025 CrossRefGoogle Scholar
  10. 10.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. doi: 10.1007/s10295-003-0049-x CrossRefGoogle Scholar
  11. 11.
    Polizeli MLTM (2009) Properties and commercial applications of xylanases from fungi. In: Rai M (ed) Advances in fungal biotechnology, 1st edn. International Publisher, New Delhi, pp 82–108Google Scholar
  12. 12.
    Garrote G, Falqué E, Domínguez H, Parajó JC (2007) Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour Technol 98:1951–1957. doi: 10.1016/j.biortech.2006.07.049 CrossRefGoogle Scholar
  13. 13.
    Montané D, Farriol X, Salvadó J, Jollez P, Chornet E (1998) Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. Cellulose pulp and byproducts from hemicellulose and lignin. J Wood Chem Technol 18:171–191CrossRefGoogle Scholar
  14. 14.
    Shimizu K, Sudo K, Ono H, Ishihara M, Fujii T, Hishiyama S (1998) Integrated process for total utilization of wood components by steam explosion pretreatment. Biomass Bioenergy 14:195–203. doi: 10.1016/S0961-9534(97)10044-7 CrossRefGoogle Scholar
  15. 15.
    Nabarlatz D, Ebringerová A, Montané D (2007) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr Polym 69:20–28. doi: 10.1016/j.carbpol.2006.08.020 CrossRefGoogle Scholar
  16. 16.
    Ruiz HA, Ruzene DS, Silva DP, Silva FFM, Vicente AA, Teixeira JA (2011) Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164:629–641. doi: 10.1007/s12010-011-9163-9 CrossRefGoogle Scholar
  17. 17.
    Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw-effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94. doi: 10.1002/jctb.2518 CrossRefGoogle Scholar
  18. 18.
    Vogel HF (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446CrossRefGoogle Scholar
  19. 19.
    Adams PR (1990) Mycelial amylase activities of thermophilic species of Rhizomucor, Humicola and Papulaspora. Mycopathologia 112:35–37. doi: 10.1007/BF01795178 CrossRefGoogle Scholar
  20. 20.
    Miller GH (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429CrossRefGoogle Scholar
  21. 21.
    Kersters-Hilderson H, Claeyssens M, Doorslaer EV, Saman E, Bruyne CK (1982) β-d xylosidase from Bacillus pumilus. Meth Enzymol 83:631–639CrossRefGoogle Scholar
  22. 22.
    Garrote G, Domínguez H, Parajó JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng 52:211–218CrossRefGoogle Scholar
  23. 23.
    Parajó JC, Garrote G, Cruz JM, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120. doi: 10.1016/j.tifs.2003.09.009 CrossRefGoogle Scholar
  24. 24.
    Felipe MGA, Mancilha IM, Vitolo M, Roberto IC, Silva SS, Rosa SAM (1993) Preparation of xylitol by fermentation of a hydrolysate of hemicellulose obtained from sugarcane bagasse. Arq Biol Technol 36:103–114Google Scholar
  25. 25.
    Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331. doi: 10.1016/0141-0229(95)00157-3 CrossRefGoogle Scholar
  26. 26.
    Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708. doi: 10.1007/s002530000328 CrossRefGoogle Scholar
  27. 27.
    Szengyel Z, Zacchi G (2000) Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 89:31–42CrossRefGoogle Scholar
  28. 28.
    Dobrev GT, Pishtiyski IG, Stanchev VS, Mircheva R (2007) Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour Technol 98:2671–2678. doi: 10.1016/j.biortech.2006.09.022 CrossRefGoogle Scholar
  29. 29.
    Pandey A, Soccol CR, Mitchell D (2000) New developments in solid-state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169. doi: 10.1016/S0032-9592(00)00152-7 CrossRefGoogle Scholar
  30. 30.
    Damaso MCT, Andrade CMM, Pereira N Jr (2000) Use of corncob for endoxylanase production by Thermomyces lanuginosus IOC—4145. Appl Biochem Biotechnol 84–86:821–834CrossRefGoogle Scholar
  31. 31.
    Betini JHA, Michelin M, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli MLTM (2009) Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced by solid state fermentation and its application on cellulose pulp bleaching. Bioprocess Biosystem Eng 32(6):819–824. doi: 10.1007/s00449-009-0308-y CrossRefGoogle Scholar
  32. 32.
    Ridder ER, Nokes SE, Knutson BL (1999) Optimization of solid-state fermentation parameters for the production of xylanase by Trichoderma longibrachiatum on wheat bran in a forced aeration system. Am Soc Agric Eng 42(6):1785–1790. doi: 10.1016/j.enzmictec.2006.06.013 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Michele Michelin
    • 1
    • 2
  • Maria de Lourdes T. M. Polizeli
    • 2
  • Denise S. Ruzene
    • 1
    • 3
  • Daniel P. Silva
    • 1
    • 3
  • Héctor A. Ruiz
    • 1
  • António A. Vicente
    • 1
  • João A. Jorge
    • 2
  • Héctor F. Terenzi
    • 2
  • José A. Teixeira
    • 1
  1. 1.Institute for Biotechnology and Bioengineering (IBB), Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  3. 3.Institute of Technology and ResearchUniversity TiradentesAracajuBrazil

Personalised recommendations