Bioprocess and Biosystems Engineering

, Volume 35, Issue 6, pp 963–975 | Cite as

Use of focussed beam reflectance measurement (FBRM) for monitoring changes in biomass concentration

  • Jessica Whelan
  • Eilis Murphy
  • Alan Pearson
  • Paul Jeffers
  • Patricia Kieran
  • Susan McDonnell
  • Brian Glennon
Original Paper


The potential of focussed beam reflectance measurement (FBRM) as a tool to monitor changes in biomass concentration was investigated in a number of biological systems. The measurement technique was applied to two morphologically dissimilar plant cell suspension cultures, Morinda citrifolia and Centaurea calcitrapa, to a filamentous bacteria, Streptomyces natalensis, to high density cultures of Escherichia coli and to a murine Sp2/0 hybridoma suspension cell line, 3–2.19. In all cases, the biomass concentration proved to be correlated with total FBRM counts. The nature of the correlation varied between systems and was influenced by the concentration, nature, size and morphology of the particle under investigation.


Biomass concentration On-line monitoring FBRM Cell morphology 



The authors gratefully acknowledge the financial support of the following: DPS Engineering Ltd., Enterprise Ireland, UCD and IRCSET, the Irish Research Council for Science, Engineering and Technology.


  1. 1.
    Zhou WC, Hu WS (1994) Online characterization of a hybridoma cell culture process. Biotechnol Bioeng 44(2):170–177CrossRefGoogle Scholar
  2. 2.
    Junker BH, Reddy J, Gbewonyo K, Greasham R (1994) Online and in situ monitoring technology for cell density measurement in microbial and animal cell cultures. Bioprocess Eng 10(5–6):195–207Google Scholar
  3. 3.
    Wu P, Ozturk SS, Blackie JD, Thrift JC, Figueroa C, Naveh D (1995) Evaluation and applications of optical cell density probes in mammalian cell bioreactors. Biotechnol Bioeng 45(6):495–502CrossRefGoogle Scholar
  4. 4.
    Macmichael G, Armiger WB, Lee JF, Mutharasan R (1987) On-line measurement of hybridoma growth by culture fluorescence. Biotechnol techniques 1:213–218CrossRefGoogle Scholar
  5. 5.
    Kilburn DG, Fitzpatrick P, Blakecoleman BC, Clarke DJ, Griffiths JB (1989) Online monitoring of cell mass in mammalian cell cultures by acoustic densitometry. Biotechnol Bioeng 33(11):1379–1384CrossRefGoogle Scholar
  6. 6.
    Burgemeister S, Nattkemper TW, Noll T, Hoffrogge R, Flaschel E (2010) CellViCAM—Cell viability classification for animal cell cultures using dark filed micrographs. J Biotechnol 149(4):310–316CrossRefGoogle Scholar
  7. 7.
    Guez JS, Cassar JP, Wartelle F, Dhulster P, Suhr H (2010) The viability of animal cell cultures: can it be estimated online by using in situ microscopy? Process Biochem 45(2):288–291CrossRefGoogle Scholar
  8. 8.
    Wlaschin KF, Hu WS (2006) Fedbatch culture and dynamic nutrient feeding. Cell Culture Eng 101:43–74CrossRefGoogle Scholar
  9. 9.
    Barrett M, McNamara M, Hao HX, Barrett P, Glennon B (2010) Supersaturation tracking for the development, optimization and control of crystallization processes. Chem Eng Res Des 88(8A):1108–1119CrossRefGoogle Scholar
  10. 10.
    O’Grady D, Barrett M, Casey E, Glennon B (2007) The effect of mixing on the metastable zone width and nucleation kinetics in the anti-solvent crystallization of benzoic acid. Chem Eng Res Des 85(A7):945–952CrossRefGoogle Scholar
  11. 11.
    Barrett P, Glennon B (2002) Characterizing the metastable zone width and solubility curve using Lasentec FBRM and PVM. Chem Eng Res Des 80(A7):799–805CrossRefGoogle Scholar
  12. 12.
    Uduman N, Qi Y, Danquah MK, Hoadley AFA (2010) Marine microalgae flocculation and focused beam reflectance measurement. Chem Eng J 162(3):935–940CrossRefGoogle Scholar
  13. 13.
    Ge XM, Zhao XQ, Bai FW (2005) Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol Bioeng 90(5):523–531CrossRefGoogle Scholar
  14. 14.
    McDonald KA, Jackman AP, Hurst S (2001) Characterization of plant suspension cultures using the focused beam reflectance technique. Biotechnol Lett 23(4):317–324CrossRefGoogle Scholar
  15. 15.
    Pearson AP, Glennon B, Kieran PM (2004) Monitoring of cell growth using the focused beam reflectance method. J Chem Technol Biotechnol 79(10):1142–1147CrossRefGoogle Scholar
  16. 16.
    Jeffers P, Raposo S, Lima-Costa ME, Connolly P, Glennon B, Kieran PM (2003) Focussed beam reflectance measurement (FBRM) monitoring of particle size and morphology in suspension cultures of Morinda citrifolia and Centaurea calcitrapa. Biotechnol Lett 25(23):2023–2028CrossRefGoogle Scholar
  17. 17.
    Sparks RG, Dobbs CL (1993) The use of laser backscatter instrumentation for the online measurement of the particle size distribution of emulsions. Part Part Syst Charact 10(5):279–289CrossRefGoogle Scholar
  18. 18.
    Hopfner T, Bluma A, Rudolph G, Lindner P, Scheper T (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33(2):247–256CrossRefGoogle Scholar
  19. 19.
    Pearson AP, Glennon B, Kieran PM (2003) Comparison of morphological characteristics of Streptomyces natalensis by image analysis and focused beam reflectance measurement. Biotechnol Prog 19(4):1342–1347CrossRefGoogle Scholar
  20. 20.
    Seah SYK, Britton KL, Baker PJ, Rice DW, Asano Y, Engel PC (1995) Alteration in relative activities of phenylalanine dehydrogenase towards different substrates by site-directed mutagenesis. FEBS Lett 370(1–2):93–96CrossRefGoogle Scholar
  21. 21.
    Faulkner E, Barrett M, Okor S, Kieran P, Casey E, Paradisi F, Engel P, Glennon B (2006) Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli. Biotechnol Prog 22(3):889–897CrossRefGoogle Scholar
  22. 22.
    Fitzpatrick B, O’Kennedy R (2004) The development and application of a surface plasmon resonance-based inhibition immunoassay for the determination of warfarin in plasma ultrafiltrate. J Immunol Methods 291(1–2):11–25CrossRefGoogle Scholar
  23. 23.
    Barrett P (2002) In situ monitoring of crystallization processes. University College Dublin, DublinGoogle Scholar
  24. 24.
    Heath AR, Fawell PD, Bahri PA, Swift JD (2002) Estimating average particle size by focused beam reflectance measurement (FBRM). Part Part Syst Charact 19(2):84–95CrossRefGoogle Scholar
  25. 25.
    Emery AN, Jan DCH, Al-Rubeai M (1995) Oxygenation of intensive cell culture system. Appl Microb Biotechnol 43(6):1028–1033CrossRefGoogle Scholar
  26. 26.
    Ishaque A, Al-Rubeai M (2004) Monitoring of apoptosis. In: Al-Rubeai M, Fussenegger M (eds) Cell engineering: apoptosis, vol 4. Springer, Heidelberg, pp 281–306Google Scholar
  27. 27.
    Van de Goor J (2004) Improvement of industrial cell culture processes by caspase-9 dominant negative and other apoptosis inhibitors. In: Al-Rubeai M, Fussenegger M (eds) Cell engineering: apoptosis, vol 4. Springer, Heidelberg, pp 211–221Google Scholar
  28. 28.
    Zeng A, Bi J (2005) Cell culture kinetics and modeling. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Boca Raton, pp 299–348Google Scholar
  29. 29.
    Franek F, Dolnikova J (1991) Hybridoma growth and monoclonal antibody production in iron-rich protein-free medium: effect of nutrient concentration. Cytotechnology 7(1):33–38CrossRefGoogle Scholar
  30. 30.
    Mercille S, Massie B (1994) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng 44(9):1140–1154CrossRefGoogle Scholar
  31. 31.
    Singh RP, Al-Rubeai M, Gregory CD, Emery AN (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng 44(6):720–726CrossRefGoogle Scholar
  32. 32.
    Bartlett M, Huang G, Larcom L, Jiang HB (2004) Measurement of particle size distribution in mammalian cells in vitro by use of polarized light spectroscopy. Appl Opt 43:1296–1307CrossRefGoogle Scholar
  33. 33.
    Backman V, Gopal V, Kalashnikov M, Badizadegan K, Gurjar R, Wax A, Georgakoudi I, Mueller M, Boone CW, Dasari RR, Feld MS (2001) Measuring cellular structure at submicrometer scale with light scattering spectroscopy. IEEE J Sel Topics Quantum Electron 7(6):887–893CrossRefGoogle Scholar
  34. 34.
    Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, Dasari RR, Feld MS (2001) Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat Med 7(11):1245–1248CrossRefGoogle Scholar
  35. 35.
    Drezek R, Guillaud M, Collier T, Boiko I, Malpica A, Macaulay C, Follen M, Richards-Kortum R (2003) Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. J Biomedical Opt 8(1):7–16CrossRefGoogle Scholar
  36. 36.
    Collins RJ, Harmon BV, Gobe GC, Kerr JFR (1992) Inter nucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61(4):451–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jessica Whelan
    • 1
  • Eilis Murphy
    • 2
  • Alan Pearson
    • 3
  • Paul Jeffers
    • 4
  • Patricia Kieran
    • 1
  • Susan McDonnell
    • 1
  • Brian Glennon
    • 1
  1. 1.UCD School of Chemical and Bioprocess EngineeringUCDDublin 4Ireland
  2. 2.Training DepartmentNational Institute of Bioprocessing Research and TrainingDublin 4Ireland
  3. 3.Pharmaceutical Operations, MSD IrelandTipperaryIreland
  4. 4.Process Analytical Sciences GroupPfizer Ireland PharmaceuticalsCorkIreland

Personalised recommendations