Bioprocess and Biosystems Engineering

, Volume 35, Issue 1–2, pp 183–189

Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium

  • Dong Min Kim
  • Seung-Hyun Choi
  • Byung Sam Ko
  • Gwon-Young Jeong
  • Han-Bit Jang
  • Jae-Gun Han
  • Kyung-Hwan Jeong
  • Hyeon-Yong Lee
  • Yonggwan Won
  • Il-Chul Kim
Original Paper

Abstract

Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote d-xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing d-xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates d-xylose, its ethanol productivity is quite low during fermentation with d-xylose alone. In order to ascertain the key enzyme in ethanol production from d-xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.

Keywords

Ethanol Pyruvate carboxylase Saccharomyces cerevisiae Xylose Xylose isomerase 

References

  1. 1.
    Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331CrossRefGoogle Scholar
  2. 2.
    Jeffries TW (2006) Engineering yeast for xylose metabolism. Curr Opin Biotechnol 17:320–326CrossRefGoogle Scholar
  3. 3.
    Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, Ogino C, Ohmura N, Ohshima T, Kondo A (2010) Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol 88:1215–1221CrossRefGoogle Scholar
  4. 4.
    Almeida JR, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6(3):286–299. doi:10.1002/biot.201000301 CrossRefGoogle Scholar
  5. 5.
    Richard P, Toivari MH, Penttila M (2000) The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett 190:39–43CrossRefGoogle Scholar
  6. 6.
    Kang HA, Hershey JWB (1994) Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J Bio Chem 269:3934–3940Google Scholar
  7. 7.
    Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, NYGoogle Scholar
  8. 8.
    Park JN, Lee KH, Ko HM, Seo KH, Chin JE, Lee HB, Bai S (2004) Expression of ethionine resistance conferring gene in an industrial strains of Saccharomyces cerevisiae. Kor J Microbiol Biotechnol 32:356–361Google Scholar
  9. 9.
    Gietz RD, Schiest RH (2007) Large-scale high efficiency yeast transformation using the LiAc/ss carrier DNA/PEG method. Nat Protocols 2:38–41CrossRefGoogle Scholar
  10. 10.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  11. 11.
    Dische Z, Borenfreund E (1951) A new spectrophotometric method for the deletion and determination of keto sugars and triose. J Biol Chem 192:583–587Google Scholar
  12. 12.
    Ma Y, Lin LL, Chien HR, Hsu WH (2000) Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol Appl Biochem 31:55–59CrossRefGoogle Scholar
  13. 13.
    Phillips AJ (2006) Homology assessment and molecular sequence alignment. J Biomed Inform 39:18–33CrossRefGoogle Scholar
  14. 14.
    van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204Google Scholar
  15. 15.
    Ko BS, Kim DM, Yoon BH, Bai S, Lee HY, Kim JH, Kim IC (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33:1209–1213CrossRefGoogle Scholar
  16. 16.
    Otterstedt K, Larsson C, Bill RM, Stahlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO reports 5:532–537CrossRefGoogle Scholar
  17. 17.
    Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA (2008) Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 8:1164–1174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dong Min Kim
    • 1
  • Seung-Hyun Choi
    • 2
  • Byung Sam Ko
    • 2
  • Gwon-Young Jeong
    • 2
  • Han-Bit Jang
    • 2
  • Jae-Gun Han
    • 3
  • Kyung-Hwan Jeong
    • 4
  • Hyeon-Yong Lee
    • 3
  • Yonggwan Won
    • 1
  • Il-Chul Kim
    • 2
  1. 1.BK21 Ubiquitous Information AppliancesChonnam National UniversityGwangjuKorea
  2. 2.Department of Biological SciencesChonnam National UniversityGwangjuKorea
  3. 3.College of Bioscience and BiotechnologyKangwon National UniversityChuncheonKorea
  4. 4.Department of BiotechnologyChungju National UniversityChungbukKorea

Personalised recommendations