Bioprocess and Biosystems Engineering

, Volume 35, Issue 3, pp 351–358 | Cite as

Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation

  • Luciane Batistella
  • Mara K. Ustra
  • Aline Richetti
  • Sibele B. C. Pergher
  • Helen Treichel
  • J. V. Oliveira
  • Lindomar Lerin
  • Débora de Oliveira
Original Paper


Both stability and catalytic activity of two commercial immobilized lipases were investigated in the presence of different organic solvents in ultrasound-assisted system. In a general way, for Novozym 435, the use of ethanol as solvent led to a loss of activity of 35% after 10 h of contact. The use of iso-octane conducted to a gradual increase in lipase activity in relation to the contact time, reaching a maximum value of relative activity of 126%. For Lipozyme RM IM, after 5 h of exposure, the enzyme presented no residual activity when ethanol was used as solvent. The solvents tert-butanol and iso-octane showed an enhancement of about 20 and 17% in the enzyme activity in 6 h of exposure, respectively. Novozym 435 and Lipozyme IM presented high stability to storage after treatment under ultrasound-assisted system using n-hexane and tert-butanol as solvents.


Lipases Enzyme activity Ultrasound system Enzyme stability 



The authors thank CNPq, FAPERGS and CAPES for the financial support of this work and scholarships.


  1. 1.
    Hasan F, Shah AA, Hameed A (2009) Biotechn Adv 27:782CrossRefGoogle Scholar
  2. 2.
    Gupta R, Gupta N, Rathi P (2004) Appl Microb Biotechn 64:763CrossRefGoogle Scholar
  3. 3.
    Joseph B, Ramteke PW, Thomas G (2008) Biotechn Adv 26:457CrossRefGoogle Scholar
  4. 4.
    Sharma R, Chisti Y, Banerjee UC (2001) Biotechn Adv 19:627CrossRefGoogle Scholar
  5. 5.
    Treichel H, Oliveira D, Mazutti MA et al (2010) Food Bioprocess Technol 3:182CrossRefGoogle Scholar
  6. 6.
    Cabrera Z, Lorente GF, Lafuente RF et al (2009) J Mol Catal B Enzym 57:171CrossRefGoogle Scholar
  7. 7.
    Rahman RNZRA, Baharum SN, Salleh AB et al (2006) J Microbiol 44:583Google Scholar
  8. 8.
    Doukyu N, Ogino H (2010) Biochem Eng J 48:270CrossRefGoogle Scholar
  9. 9.
    Anvar A, Saleemuddin M (1998) Biosens Technol 64:175Google Scholar
  10. 10.
    De Paula AV, Barboza JCS, Castro HF (2005) Quim Nova 28:792CrossRefGoogle Scholar
  11. 11.
    Tsukamoto J (2006) Dissertação de doutorado. Unicamp Campinas, Sao PauloGoogle Scholar
  12. 12.
    Cintas P, Luche JL (1999) Green Chem 1:115CrossRefGoogle Scholar
  13. 13.
    Lee J, Snyder JK (1989) B J Am Chem Soc 111:1522Google Scholar
  14. 14.
    Torok B, Balazsik K, Torok M et al (2000) Ultrasound Sonochem 7:151CrossRefGoogle Scholar
  15. 15.
    Yachmenev VG, Blanchard EJ, Lambert AH (2004) Ultrasound 42:87Google Scholar
  16. 16.
    Li C, Yoshimoto M, Ogata H et al (2005) Ultrasound Sonochem 12:373CrossRefGoogle Scholar
  17. 17.
    Lin G, Liu H (1995) Tetrahedron Lett 36:6067CrossRefGoogle Scholar
  18. 18.
    Ribeiro CMR, Passaroto EN, Brenelli ECS (2001) Tetrahedron Lett 42:6477CrossRefGoogle Scholar
  19. 19.
    Brenelli ECS, Fernandes JLN (2003) Tetrahedron Asymm 14:1255CrossRefGoogle Scholar
  20. 20.
    Xiao Y, Wu Q, Cai Y et al (2005) Carbohydr Res 340:2097Google Scholar
  21. 21.
    Vulfson EN, Sarney BD, Law BA (1991) Enzym Microb Technol 13:123CrossRefGoogle Scholar
  22. 22.
    Braginskaya FI, Zaitzeva EA, Zorina OM et al (1990) Radiat Environ Biophys 29:47CrossRefGoogle Scholar
  23. 23.
    Gebicka L, Gekicki JL (1997) J Enzym Inhib 12:133CrossRefGoogle Scholar
  24. 24.
    Sinisterra JV (1992) Ultrasound 30:180Google Scholar
  25. 25.
    Bracey E, Stenning RA, Brooker BE (1998) Enzym Microb Technol 22:147CrossRefGoogle Scholar
  26. 26.
    Ozbek B, Ulgen KO (2000) Proc Biochem 35:1037CrossRefGoogle Scholar
  27. 27.
    Tian ZM, Wan MX, Wang SP et al (2004) Ultrasound Sonochem 11:399Google Scholar
  28. 28.
    Gupta MN (1992) Eur J Biochem 203:25CrossRefGoogle Scholar
  29. 29.
    Gupta MN (2000) Methods in nonaqueous enzymology. Birkhauser, BaselCrossRefGoogle Scholar
  30. 30.
    Halling PJ (2002) In: Drauz K, Waldmann H (eds) Enzymatic catalysis in organic synthesis, Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Novo Nordisk (1992) Tech Rep A 05948Google Scholar
  32. 32.
    Oliveira D, Feihrmann AC, Rubira AF et al (2006) J Supercr Fluid 38:373CrossRefGoogle Scholar
  33. 33.
    Ceni GC, Silva PC, Lerin L et al (2011) Enzym Microb Technol 48:169CrossRefGoogle Scholar
  34. 34.
    Laane C, Boeren S, Vos K et al (1987) Biotech Bioeng 30:81CrossRefGoogle Scholar
  35. 35.
    Lerin LA, Richetti A, Dallago R et al (2010) Food Bioprocess Technol. doi: 10.1007/s11947-010-0398-1
  36. 36.
    Toma M, Fukuomi S, Asakura Y et al (2011) Ultrasound Sonochem 18:197CrossRefGoogle Scholar
  37. 37.
    Liu Y, Zhang X, Tan H et al (2010) Proc Biochem 45:1176CrossRefGoogle Scholar
  38. 38.
    Secundo F, Carrea G (2002) J Mol Catal B Enz 19–20:93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Luciane Batistella
    • 1
  • Mara K. Ustra
    • 1
  • Aline Richetti
    • 1
  • Sibele B. C. Pergher
    • 2
  • Helen Treichel
    • 1
  • J. V. Oliveira
    • 1
  • Lindomar Lerin
    • 1
  • Débora de Oliveira
    • 1
  1. 1.Departamento de Engenharia de AlimentosUniversidade Regional Integrada do Alto Uruguai e das Missões, URI—Campus de ErechimErechimBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do Rio Grande do Norte, Centro de Ciências ExatasNatalBrazil

Personalised recommendations