Bioprocess and Biosystems Engineering

, Volume 35, Issue 3, pp 351–358 | Cite as

Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation

  • Luciane Batistella
  • Mara K. Ustra
  • Aline Richetti
  • Sibele B. C. Pergher
  • Helen Treichel
  • J. V. Oliveira
  • Lindomar Lerin
  • Débora de Oliveira
Original Paper

Abstract

Both stability and catalytic activity of two commercial immobilized lipases were investigated in the presence of different organic solvents in ultrasound-assisted system. In a general way, for Novozym 435, the use of ethanol as solvent led to a loss of activity of 35% after 10 h of contact. The use of iso-octane conducted to a gradual increase in lipase activity in relation to the contact time, reaching a maximum value of relative activity of 126%. For Lipozyme RM IM, after 5 h of exposure, the enzyme presented no residual activity when ethanol was used as solvent. The solvents tert-butanol and iso-octane showed an enhancement of about 20 and 17% in the enzyme activity in 6 h of exposure, respectively. Novozym 435 and Lipozyme IM presented high stability to storage after treatment under ultrasound-assisted system using n-hexane and tert-butanol as solvents.

Keywords

Lipases Enzyme activity Ultrasound system Enzyme stability 

References

  1. 1.
    Hasan F, Shah AA, Hameed A (2009) Biotechn Adv 27:782CrossRefGoogle Scholar
  2. 2.
    Gupta R, Gupta N, Rathi P (2004) Appl Microb Biotechn 64:763CrossRefGoogle Scholar
  3. 3.
    Joseph B, Ramteke PW, Thomas G (2008) Biotechn Adv 26:457CrossRefGoogle Scholar
  4. 4.
    Sharma R, Chisti Y, Banerjee UC (2001) Biotechn Adv 19:627CrossRefGoogle Scholar
  5. 5.
    Treichel H, Oliveira D, Mazutti MA et al (2010) Food Bioprocess Technol 3:182CrossRefGoogle Scholar
  6. 6.
    Cabrera Z, Lorente GF, Lafuente RF et al (2009) J Mol Catal B Enzym 57:171CrossRefGoogle Scholar
  7. 7.
    Rahman RNZRA, Baharum SN, Salleh AB et al (2006) J Microbiol 44:583Google Scholar
  8. 8.
    Doukyu N, Ogino H (2010) Biochem Eng J 48:270CrossRefGoogle Scholar
  9. 9.
    Anvar A, Saleemuddin M (1998) Biosens Technol 64:175Google Scholar
  10. 10.
    De Paula AV, Barboza JCS, Castro HF (2005) Quim Nova 28:792CrossRefGoogle Scholar
  11. 11.
    Tsukamoto J (2006) Dissertação de doutorado. Unicamp Campinas, Sao PauloGoogle Scholar
  12. 12.
    Cintas P, Luche JL (1999) Green Chem 1:115CrossRefGoogle Scholar
  13. 13.
    Lee J, Snyder JK (1989) B J Am Chem Soc 111:1522Google Scholar
  14. 14.
    Torok B, Balazsik K, Torok M et al (2000) Ultrasound Sonochem 7:151CrossRefGoogle Scholar
  15. 15.
    Yachmenev VG, Blanchard EJ, Lambert AH (2004) Ultrasound 42:87Google Scholar
  16. 16.
    Li C, Yoshimoto M, Ogata H et al (2005) Ultrasound Sonochem 12:373CrossRefGoogle Scholar
  17. 17.
    Lin G, Liu H (1995) Tetrahedron Lett 36:6067CrossRefGoogle Scholar
  18. 18.
    Ribeiro CMR, Passaroto EN, Brenelli ECS (2001) Tetrahedron Lett 42:6477CrossRefGoogle Scholar
  19. 19.
    Brenelli ECS, Fernandes JLN (2003) Tetrahedron Asymm 14:1255CrossRefGoogle Scholar
  20. 20.
    Xiao Y, Wu Q, Cai Y et al (2005) Carbohydr Res 340:2097Google Scholar
  21. 21.
    Vulfson EN, Sarney BD, Law BA (1991) Enzym Microb Technol 13:123CrossRefGoogle Scholar
  22. 22.
    Braginskaya FI, Zaitzeva EA, Zorina OM et al (1990) Radiat Environ Biophys 29:47CrossRefGoogle Scholar
  23. 23.
    Gebicka L, Gekicki JL (1997) J Enzym Inhib 12:133CrossRefGoogle Scholar
  24. 24.
    Sinisterra JV (1992) Ultrasound 30:180Google Scholar
  25. 25.
    Bracey E, Stenning RA, Brooker BE (1998) Enzym Microb Technol 22:147CrossRefGoogle Scholar
  26. 26.
    Ozbek B, Ulgen KO (2000) Proc Biochem 35:1037CrossRefGoogle Scholar
  27. 27.
    Tian ZM, Wan MX, Wang SP et al (2004) Ultrasound Sonochem 11:399Google Scholar
  28. 28.
    Gupta MN (1992) Eur J Biochem 203:25CrossRefGoogle Scholar
  29. 29.
    Gupta MN (2000) Methods in nonaqueous enzymology. Birkhauser, BaselCrossRefGoogle Scholar
  30. 30.
    Halling PJ (2002) In: Drauz K, Waldmann H (eds) Enzymatic catalysis in organic synthesis, Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Novo Nordisk (1992) Tech Rep A 05948Google Scholar
  32. 32.
    Oliveira D, Feihrmann AC, Rubira AF et al (2006) J Supercr Fluid 38:373CrossRefGoogle Scholar
  33. 33.
    Ceni GC, Silva PC, Lerin L et al (2011) Enzym Microb Technol 48:169CrossRefGoogle Scholar
  34. 34.
    Laane C, Boeren S, Vos K et al (1987) Biotech Bioeng 30:81CrossRefGoogle Scholar
  35. 35.
    Lerin LA, Richetti A, Dallago R et al (2010) Food Bioprocess Technol. doi:10.1007/s11947-010-0398-1
  36. 36.
    Toma M, Fukuomi S, Asakura Y et al (2011) Ultrasound Sonochem 18:197CrossRefGoogle Scholar
  37. 37.
    Liu Y, Zhang X, Tan H et al (2010) Proc Biochem 45:1176CrossRefGoogle Scholar
  38. 38.
    Secundo F, Carrea G (2002) J Mol Catal B Enz 19–20:93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Luciane Batistella
    • 1
  • Mara K. Ustra
    • 1
  • Aline Richetti
    • 1
  • Sibele B. C. Pergher
    • 2
  • Helen Treichel
    • 1
  • J. V. Oliveira
    • 1
  • Lindomar Lerin
    • 1
  • Débora de Oliveira
    • 1
  1. 1.Departamento de Engenharia de AlimentosUniversidade Regional Integrada do Alto Uruguai e das Missões, URI—Campus de ErechimErechimBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do Rio Grande do Norte, Centro de Ciências ExatasNatalBrazil

Personalised recommendations