Advertisement

Bioprocess and Biosystems Engineering

, Volume 34, Issue 8, pp 913–921 | Cite as

Development of a biotechnological process for the production of high quality linen fibers

  • Ana Gabriela Valladares Juárez
  • Gernot Rost
  • Uwe Heitmann
  • Egon Heger
  • Rudolf Müller
Original Paper

Abstract

A novel biotechnological process for the production of high-quality flax fibers was developed. In this process, decorticated fibers from green flax were washed with 0.5% soda solution and treated with the pectinolytic strain Geobacillus thermoglucosidasius PB94A. Before drying the fibers, they were treated with the textile softener Adulcinol BUN. If the fibers contained contaminant shives, a bleaching step with hydrogen peroxide was performed before the softener treatment. In experiments where fibers were treated by the new process, and in which the bacterial solutions were reused seven times, the fiber quality was similar in all batches. The resolution of the treated fibers was 2.7 ± 0.4 and the fineness was 11.1 ± 1.1 dtex, while the starting material had a resolution of 7.3 and a fineness of 37 dtex. The new biotechnological treatment eliminates the weather-associated risks of the traditional fiber retting completely and produces consistently high-quality fibers that can be used to produce fine linen yarns.

Keywords

Flax Retting Pectinases Geobacillus thermoglucosidasius Alkaliphilic Textiles 

Notes

Acknowledgments

The financial support of the project by the Fachagentur Nachwachsende Rohstoffe e. V. (FKZ 22006303) is gratefully appreciated. The authors thank the company Zschimmer & Schwarz for kindly providing the Adulcinol BUN.

References

  1. 1.
    Lagassé P, Goldman L, Hobson A, Norton SR (2000) The Columbia encyclopedia. Columbia University Press, New YorkGoogle Scholar
  2. 2.
    European Union (2008) Report from the commission to the european parliament and the council on the flax and hemp sector. Commission of the European Communities, BrusselsGoogle Scholar
  3. 3.
    Hann MA (2005) Innovation in Linen manufacture. Text Prog 37:1–42CrossRefGoogle Scholar
  4. 4.
    Lamb PR, Denning RJ (2004) Flax: cottonised fibre from linseed stalks. Report for the Australian Government Rural Industries Research and Development CorporationGoogle Scholar
  5. 5.
    Kessler RW, Becker U, Kohler R, Goth B (1998) Steam explosion of flax—a superior technique for upgrading fibre value. Biomass Bioenergy 14:237–249CrossRefGoogle Scholar
  6. 6.
    Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. 7.
    Agriculture and Agri-Food Canada (2003) Biofibres. Canadian Agricultural New Uses CouncilGoogle Scholar
  8. 8.
    Hampicke U, Litterski B, Wichtmann W (2007) Anbau der heimischen Faserpflanzen Flachs und Hanf im Blickfeld von Agrar-und Naturschutzökonomie. In: Biehler H, Hampicke U, Richter U, Weise P (eds) Regionale Wertschöpfungssysteme von Flachs und Hanf.. Metropolis Verlag, MarburgGoogle Scholar
  9. 9.
    Kozlowski R (1992) Retting of flax in Poland. In: Sharma HSS, Sumere CF (eds) The biology and processing of Flax. M Publications, BelfastGoogle Scholar
  10. 10.
    van Sumere CF (1992) Retting of flax with special reference to enzyme-retting. In: Sharma HSS, Sumere CF (eds) The biology and processing of Flax. M Publications, BelfastGoogle Scholar
  11. 11.
    Valladares Juárez AG, Dreyer J, Göpel PK, Koschke N, Frank D, Märkl H, Müller R (2009) Characterisation of a new thermoalkaliphilic bacterium for the production of high-quality hemp fibres, Geobacillus thermoglucosidasius strain PB94A. Appl Microbiol Biotechnol 83:521–527CrossRefGoogle Scholar
  12. 12.
    Atlas RM (2004) Handbook of microbiological media. CRC, Boca RatonCrossRefGoogle Scholar
  13. 13.
    Collmer A, Ried JL, Mount MS (1988) Assay methods for pectic enzymes. Methods in enzymology. Academic Press, San DiegoGoogle Scholar
  14. 14.
    Edstrom RD, Phaff HJ (1964) Purification and certain properties of pectin trans-eliminase from Aspergillus fonsecaeus. J Biol Chem 239:2403–2408Google Scholar
  15. 15.
    Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489CrossRefGoogle Scholar
  16. 16.
    Teather R, Wood P (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780Google Scholar
  17. 17.
    Aldrich J, Cullis C (1993) RAPD analysis in flax: optimization of yield and reproducibility using klen Taq 1 DNA polymerase, chelex 100, and gel purification of genomic DNA. Plant Mol Biol Rep 11:128–141CrossRefGoogle Scholar
  18. 18.
    Muyzer G, Hottenträger S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer, The NetherlandsGoogle Scholar
  19. 19.
    Kleinhansl E, Sawyer MC (2005) Testing and analysis. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimGoogle Scholar
  20. 20.
    Langenhove L, Bruggeman JP (1992) Methods of fibre analysis. In: Sharma HSS, Sumere CF (eds) The biology and processing of Flax. M Publications, BelfastGoogle Scholar
  21. 21.
    Kashayp DR, Vohra PK, Soni SK, Tewari R (2001) Degumming of buel (Grewia optiva) bast fibres by pectinolytic enzyme from Bacillus sp. DT7. Biotechnol Lett 23:1297–1301CrossRefGoogle Scholar
  22. 22.
    Meijer WJM, Vertregt N, Rutgers B, Vande Waart M (1995) The pectin content as a measure of the retting and rettability of flax. Ind Crop Prod 4:273–284CrossRefGoogle Scholar
  23. 23.
    Willis HH (1936) Part II—mechanical and chemical processing of flax by the new method. Text Res J 6:290–298CrossRefGoogle Scholar
  24. 24.
    Harwood J, McCormick P, Waldron D, Bonadei R (2008) Evaluation of flax accessions for high value textile end uses. Ind Crop Prod 27:22–28CrossRefGoogle Scholar
  25. 25.
    Bismarck A, Aranberri-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A, Shenderovich I, Limbach HH (2002) Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos 23:872–894CrossRefGoogle Scholar
  26. 26.
    Kernaghan K, Keikens P (1992) Bleaching and dyeing of linen. In: Sharma HSS, Sumere CF (eds) The biology and processing of Flax. M Publications, BelfastGoogle Scholar
  27. 27.
    Vignon MR, Dupeyre D, Garcia-Jaldon C (1996) Morphological characterization of steam-exploded hemp fibers and their utilization in polypropylene-based composites. Bioresour Technol 58:203–215CrossRefGoogle Scholar
  28. 28.
    Wang HM, Postle R, Kessler RW, Kessler W (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73:664–669CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ana Gabriela Valladares Juárez
    • 1
  • Gernot Rost
    • 2
  • Uwe Heitmann
    • 2
  • Egon Heger
    • 3
  • Rudolf Müller
    • 1
  1. 1.Technische Universität Hamburg-Harburg, Institut für Technische BiokatalyseHamburgGermany
  2. 2.Institut für Textil- und Verfahrenstechnik (ITV)DenkendorfGermany
  3. 3.Holstein Flachs, Alte ZiegeleiMielsdorfGermany

Personalised recommendations