Bioprocess and Biosystems Engineering

, Volume 34, Issue 5, pp 615–619 | Cite as

Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract

Original Paper


The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV–Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au3+ ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.


Flower extract Phytochemicals Gold nanoparticles Nucleation Capping 



This work was accomplished with the funds provided by Department of Science and Technology (DST), Government of India. NG thanks MHRD for the research fellowship. We are also thankful to Prof. S.K. Borthakur (Department of Botany, Guwahati University, Guwahati, Assam, India) for helping us in identification of the flower used in the present study.


  1. 1.
    Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253CrossRefGoogle Scholar
  2. 2.
    Alric C, Taleb J, Le Duc G, Mandon C, Billotey C, Meur-Herland AL, Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Che Soc 138:5908–5915CrossRefGoogle Scholar
  3. 3.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Che Soc 128:2115–2120CrossRefGoogle Scholar
  4. 4.
    Cail W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32Google Scholar
  5. 5.
    Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28CrossRefGoogle Scholar
  6. 6.
    Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRefGoogle Scholar
  7. 7.
    Tallury P, Malhotra A, Byrne LM, Santra S (2010) Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev 62:424–437CrossRefGoogle Scholar
  8. 8.
    Lovely DR, Stoltz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254CrossRefGoogle Scholar
  9. 9.
    Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprorocess Biosyst Eng 32:79–84CrossRefGoogle Scholar
  10. 10.
    Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164CrossRefGoogle Scholar
  11. 11.
    Das RK, Borthakur BB, Bora U (2010) Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mat Lett 64:1445–1447CrossRefGoogle Scholar
  12. 12.
    Nune SK, Chanda N, Ravi Shukla, Katti K, Kulkarni RR, Thilakavathy S, Mekapothula S, Kannan R, Katti KV (2009) Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 19:2912–2920CrossRefGoogle Scholar
  13. 13.
    Smithaa SL, Philip D, Gopchandrana KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta Part A 74:735–739CrossRefGoogle Scholar
  14. 14.
    Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mat Lett 63:1231–1234CrossRefGoogle Scholar
  15. 15.
    Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A 73:374–381CrossRefGoogle Scholar
  16. 16.
    Saxena RS, Gupta B, Lata S (2002) Tranquilizing, antihistaminic and purgative activity of Nyctanthes arbortristis leaf extract. J Ethnopharmacol 81:321–325CrossRefGoogle Scholar
  17. 17.
    Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava V, Tandon JS (1994) Immunostimulant activity of Nyctanthes arbortristis L. J Ethnopharmacol 42:31–37CrossRefGoogle Scholar
  18. 18.
    Vankar PS (2008) Antioxidant activity of the flower of Nyctanthes arbortristis L. Int J Food Eng doi:10.2202/1556-3758.1437
  19. 19.
    Rathod N, Raghuveer I, Chitme HR, Chandra R (2010) Free radical scavenging activity of Nyctanthes arbortristis in streptozotocin-induced diabetic rats. Indian J Pharm Educ Res. 44:288–294Google Scholar
  20. 20.
    Tuntiwachwuttikula P, Rayanila K, Taylorb WC (2003) Chemical Constituents from the Flowers of Nyctanthes arbortristis. Sci Asia 29:21–30CrossRefGoogle Scholar
  21. 21.
    Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ratul Kumar Das
    • 1
  • Nayanmoni Gogoi
    • 2
  • Utpal Bora
    • 1
    • 2
  1. 1.Biomaterials and Tissue Engineering Laboratory, Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Centre for the EnvironmentIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations