Advertisement

Bioprocess and Biosystems Engineering

, Volume 33, Issue 8, pp 937–945 | Cite as

Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell

  • Liping HuangEmail author
  • Jingwen Chen
  • Xie Quan
  • Fenglin Yang
Original Paper

Abstract

Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340–900 m2 m−3. A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g−1VSS h−1 and a power production of 2.4 ± 0.1 W m−3 at a current density of 6.9 A m−3 were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L−1. Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

Keywords

Microbial fuel cells Biocathode Cr (VI) reduction rate Power production 

Notes

Acknowledgments

This study was supported by the “Energy + X” (2008) key program through the Dalian University of Technology, Program for Changjiang Scholars and Innovative Research Team in University (IRT0813), the Key Laboratory of Industrial Ecology and Environmental Engineering, China Ministry of Education, and SRF for ROCS, SEM of China.

References

  1. 1.
    Logan BE, Regan JM (2006) Microbial fuel cells: challenges and applications. Environ Sci Technol 40:5172–5180CrossRefGoogle Scholar
  2. 2.
    Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol 101:1533–1543CrossRefGoogle Scholar
  3. 3.
    Zhang BG, Zhou SG, Zhao HZ, Shi CH, Kong LC, Sun JJ, Yang Y, Ni JR (2010) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng 33:187–194CrossRefGoogle Scholar
  4. 4.
    Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathode limitations in microbial fuel cells: an overview. J Power Sources 180:683–694CrossRefGoogle Scholar
  5. 5.
    He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015CrossRefGoogle Scholar
  6. 6.
    Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569CrossRefGoogle Scholar
  7. 7.
    Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459CrossRefGoogle Scholar
  8. 8.
    Cao X, Huang X, Liang P, Boon N, Fan M, Zhang L, Zhang X (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:498–501CrossRefGoogle Scholar
  9. 9.
    Jia YH, Tran HT, Kim DH, Oh SJ, Park DH, Zhang RH, Ahn DH (2008) Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess Biosyst Eng 31:315–321CrossRefGoogle Scholar
  10. 10.
    Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165CrossRefGoogle Scholar
  11. 11.
    Molokwane PE, Meli KC, Nkhalambayausi-Chirw EM (2008) Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res 42:4538–4548CrossRefGoogle Scholar
  12. 12.
    Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev Microbiol 7:375–381CrossRefGoogle Scholar
  13. 13.
    Lovley DR (2009) Future shock from the microbe electric. Microbial Biotechnol 2:128–156CrossRefGoogle Scholar
  14. 14.
    Fan Y, Hu H, Liu H (2007) Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171:348–354CrossRefGoogle Scholar
  15. 15.
    Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175:196–200CrossRefGoogle Scholar
  16. 16.
    Hong SW, Chang IS, Choi YS, Kim BH, Chung TH (2009) Responses from freshwater sediment during electricity generation using microbial fuel cells. Bioprocess Biosyst Eng 32:389–395CrossRefGoogle Scholar
  17. 17.
    You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL (2009) Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells 5:588–596CrossRefGoogle Scholar
  18. 18.
    Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nature Rev Microbiol 4:497–508CrossRefGoogle Scholar
  19. 19.
    Lovley DR (2006) Taming electricigens: how electricity-generating microbes can keep going, and going-faster. The Scientist 7:46Google Scholar
  20. 20.
    Yi H, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503CrossRefGoogle Scholar
  21. 21.
    Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571CrossRefGoogle Scholar
  22. 22.
    Wang G, Huang LP, Zhang YF (2008) Cathodic reduction of hexavalent chromium [Cr (VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30:1959–1966CrossRefGoogle Scholar
  23. 23.
    Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346CrossRefGoogle Scholar
  24. 24.
    State Environmental Protection Administration (2002) The water and wastewater monitoring methods, 4th edn. China Environmental Science Press, BeijingGoogle Scholar
  25. 25.
    Clauwaert P, Rabaey K, Aelterman P, Schamphelaire LD, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360CrossRefGoogle Scholar
  26. 26.
    Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–527CrossRefGoogle Scholar
  27. 27.
    Huang LP, Zeng RJ, Angelidaki I (2008) Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technol 99:4178–4184CrossRefGoogle Scholar
  28. 28.
    Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 431:352–1358Google Scholar
  29. 29.
    Morris J, Jin S, Crimi B, Pruden A (2009) Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J 146:161–167CrossRefGoogle Scholar
  30. 30.
    Sun J, Hu Y, Bi Z, Cao Y (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technol 100:3185–3192CrossRefGoogle Scholar
  31. 31.
    Lovely DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728Google Scholar
  32. 32.
    Ohtake H, Silver S (1994) Bacterial detoxification of toxic chromate. In: Chandry G (ed) Bacterial detoxification of toxic chromate, biological degradation and bioremediation of toxic chemicals. Chapman and Hall, LondonGoogle Scholar
  33. 33.
    Shen H, Wang Y (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777Google Scholar
  34. 34.
    Mabbett AN, Lloyd JR, Macaskie LE (2002) Effect of complexing agents on reduction of Cr (VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnol Bioeng 79:389–397CrossRefGoogle Scholar
  35. 35.
    Philip L, Iyengar L, Venkobachar C (1998) Cr (VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124:1165–1170CrossRefGoogle Scholar
  36. 36.
    Smith WA, Apel WA, Petersen JN, Peyton BM (2002) Effect of carbon and energy source on bacterial chromate reduction. Biorem J 6:205–215CrossRefGoogle Scholar
  37. 37.
    Torres CI, Marcus AK, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioeng 100:872–881CrossRefGoogle Scholar
  38. 38.
    Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813–818CrossRefGoogle Scholar
  39. 39.
    Nguyen TA, Lu Y, Yang X, Shi X (2007) Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications. Environ Sci Technol 41:7987–7996CrossRefGoogle Scholar
  40. 40.
    Erable B, Vandecandelaere I, Faimali M, Delia ML, Etcheverry L, Vandamme P, Bergel A (2009) Marine aerobic biofilm as biocathode catalyst. Bioelectrochem. doi: 10.1016/j.bioelechem.2009.06.006

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Liping Huang
    • 1
    Email author
  • Jingwen Chen
    • 1
  • Xie Quan
    • 1
  • Fenglin Yang
    • 1
  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), Department of Environmental Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations