Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract

  • Jae Yong Song
  • Eun-Yeong Kwon
  • Beom Soo KimEmail author
Original Paper


The leaf extract of Diopyros kaki was used as a reducing agent in the ecofriendly extracellular synthesis of platinum nanoparticles from an aqueous H2PtCl6·6H2O solution. A greater than 90% conversion of platinum ions to nanoparticles was achieved with a reaction temperature of 95°C and a leaf broth concentration of >10%. A variety of methods was used to characterize the platinum nanoparticles synthesized: inductively coupled plasma spectrometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The average particle size ranged from 2 to 12 nm depending on the reaction temperature and concentrations of the leaf broth and PtCl6 2−. FTIR analysis suggests that platinum nanoparticle synthesis using Diopyros kaki is not an enzyme-mediated process. This is the first report of platinum nanoparticle synthesis using a plant extract.


Biological synthesis Nanoparticles Platinum Plant extract Diopyros kaki 



This research was financially supported by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology.


  1. 1.
    Bhattacharya R, Murkherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306CrossRefGoogle Scholar
  2. 2.
    Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc 129:1428–1433CrossRefGoogle Scholar
  3. 3.
    Kim BS, Song JY (2009) Biological synthesis of metal nanoparticles. In: Hou CT, Shaw J-F (eds) Biocatalysis and agricultural biotechnology. CRC Press, Boca Raton, pp 399–407Google Scholar
  4. 4.
    Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  5. 5.
    Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84CrossRefGoogle Scholar
  6. 6.
    Song JY, Kim BS (2008) Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 25:808–811CrossRefGoogle Scholar
  7. 7.
    Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Proc Biochem. doi: 10.1016/j.procbio.2009.06.005
  8. 8.
    Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefGoogle Scholar
  9. 9.
    Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401CrossRefGoogle Scholar
  10. 10.
    Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Santiago P, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361CrossRefGoogle Scholar
  11. 11.
    Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  12. 12.
    Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  13. 13.
    Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488CrossRefGoogle Scholar
  14. 14.
    Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22:736–741CrossRefGoogle Scholar
  15. 15.
    Rai A, Chaudhary M, Ahmad A, Bhargava S, Sastry M (2007) Synthesis of triangular Au core-Ag shell nanoparticles. Mater Res Bull 42:1212–1220CrossRefGoogle Scholar
  16. 16.
    Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583CrossRefGoogle Scholar
  17. 17.
    Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379CrossRefGoogle Scholar
  18. 18.
    Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653CrossRefGoogle Scholar
  19. 19.
    JCPDS-ICDD International Center for Diffraction Data, JCPDS File No. 04-0802 (1999)Google Scholar
  20. 20.
    Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948CrossRefGoogle Scholar
  21. 21.
    Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastri M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 5:461–463CrossRefGoogle Scholar
  22. 22.
    Shahverdi A, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc Biochem 42:919–923CrossRefGoogle Scholar
  23. 23.
    Xie J, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACSNano 1:429–439Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Chemical EngineeringChungbuk National UniversityChungbukRepublic of Korea

Personalised recommendations