Advertisement

Electrochemical aptasensor for tetracycline detection

  • Yoon-Jin Kim
  • Yeon Seok Kim
  • Javed H. Niazi
  • Man Bock Gu
Original Paper

Abstract

An electrochemical aptasensor was developed for the detection of tetracycline using ssDNA aptamer that selectively binds to tetracycline as recognition element. The aptamer was highly selective for tetracycline which distinguishes minor structural changes on other tetracycline derivatives. The biotinylated ssDNA aptamer was immobilized on a streptavidin-modified screen-printed gold electrode, and the binding of tetracycline to aptamer was analyzed by cyclic voltammetry and square wave voltammetry. Our results showed that the minimum detection limit of this sensor was 10 nM to micromolar range. The aptasensor showed high selectivity for tetracycline over the other structurally related tetracycline derivatives (oxytetracycline and doxycycline) in a mixture. The aptasensor developed in this study can potentially be used for detection of tetracycline in pharmaceutical preparations, contaminated food products, and drinking water.

Keywords

Electrochemical detection Aptasensor DNA aptamers Tetracycline 

Notes

Acknowledgments

This work was supported by the Industrial Technology Development, Ministry of knowledge Economy (10032113). The authors express their gratitude for this support.

References

  1. 1.
    Epe B, Woolley P, Hornig H (1987) Competition between tetracycline and tRNA at both P and A sites of the ribosome of Escherichia coli. FEBS Lett 213(2):443–447CrossRefGoogle Scholar
  2. 2.
    Spahn CM, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74(8):423–439CrossRefGoogle Scholar
  3. 3.
    Oka H et al (2003) Survey of residual tetracycline antibiotics and sulfa drugs in kidneys of diseased animals in the Aichi Prefecture, Japan (1995–1999). J AOAC Int 86(3):494–500Google Scholar
  4. 4.
    Muriuki FK et al (2001) Tetracycline residue levels in cattle meat from Nairobi salughter house in Kenya. J Vet Sci 2(2):97–101Google Scholar
  5. 5.
    De Wasch K et al (1998) Detection of residues of tetracycline antibiotics in pork and chicken meat: correlation between results of screening and confirmatory tests. Analyst 123(12):2737–2741CrossRefGoogle Scholar
  6. 6.
    Pena AL, Lino CM, Silveira IN (1999) Determination of oxytetracycline, tetracycline, and chlortetracycline in milk by liquid chromatography with postcolumn derivatization and fluorescence detection. J AOAC Int 82(1):55–60Google Scholar
  7. 7.
    Jeon M, Rhee Paeng I (2008) Quantitative detection of tetracycline residues in honey by a simple sensitive immunoassay. Anal Chim Acta 626(2):180–185CrossRefGoogle Scholar
  8. 8.
    Croubels SM, Vanoosthuyze KE, van Peteghem CH (1997) Use of metal chelate affinity chromatography and membrane-based ion-exchange as clean-up procedure for trace residue analysis of tetracyclines in animal tissues and egg. J Chromatogr B Biomed Sci Appl 690(1–2):173–179CrossRefGoogle Scholar
  9. 9.
    Gwee MC (1982) Can tetracycline-induced fatty liver in pregnancy be attributed to choline deficiency? Med Hypotheses 9(2):157–162CrossRefGoogle Scholar
  10. 10.
    Monser L, Darghouth F (2000) Rapid liquid chromatographic method for simultaneous determination of tetracyclines antibiotics and 6-epi-doxycycline in pharmaceutical products using porous graphitic carbon column. J Pharm Biomed Anal 23(2–3):353–362CrossRefGoogle Scholar
  11. 11.
    Ng K, Linder SW (2003) HPLC separation of tetracycline analogues: comparison study of laser-based polarimetric detection with UV detection. J Chromatogr Sci 41(9):460–466Google Scholar
  12. 12.
    Kowalski P (2008) Capillary electrophoretic method for the simultaneous determination of tetracycline residues in fish samples. J Pharm Biomed Anal 47(3):487–493CrossRefGoogle Scholar
  13. 13.
    Han S, Liu E, Li H (2006) Determination of tetracycline, chlortetracycline and oxytetracycline by flow injection with inhibitory chemiluminescence detection using copper(II) as a probe ion. Luminescence 21(2):106–111CrossRefGoogle Scholar
  14. 14.
    Jalink M et al (2007) Human normal T lymphocytes and lymphoid cell lines do express alternative splicing variants of human telomerase reverse transcriptase (hTERT) mRNA. Biochem Biophys Res Commun 353(4):999–1003CrossRefGoogle Scholar
  15. 15.
    Vega D et al (2007) Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem 389(3):951–958CrossRefGoogle Scholar
  16. 16.
    Weber CC et al (2005) Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnol Bioeng 89(1):9–17CrossRefGoogle Scholar
  17. 17.
    Lee M, Walt DR (2000) A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem 282(1):142–146CrossRefGoogle Scholar
  18. 18.
    McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319(2):244–250CrossRefGoogle Scholar
  19. 19.
    Li N, Ho CM (2008) Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc 130(8):2380–2381CrossRefGoogle Scholar
  20. 20.
    Liss M et al (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74(17):4488–4495CrossRefGoogle Scholar
  21. 21.
    Minunni M et al (2004) Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron 20(6):1149–1156CrossRefGoogle Scholar
  22. 22.
    Lee SJ et al (2008) ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem 80(8):2867–2873CrossRefGoogle Scholar
  23. 23.
    Medley CD et al (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072CrossRefGoogle Scholar
  24. 24.
    Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem 45(1):90–94CrossRefGoogle Scholar
  25. 25.
    Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124(33):9678–9679CrossRefGoogle Scholar
  26. 26.
    Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem 46(34):6408–6418CrossRefGoogle Scholar
  27. 27.
    Kim YS, Lee SJ, Gu MB (2008) Electrochemical aptamer-based Biosensors. Biochip J 2(3):175–182Google Scholar
  28. 28.
    Ikebukuro K, Kiyohara C, Sode K (2005) Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron 20(10):2168–2172CrossRefGoogle Scholar
  29. 29.
    Centi S et al (2008) Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosens Bioelectron 23(11):1602–1609CrossRefGoogle Scholar
  30. 30.
    Centi S et al (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79(4):1466–1473CrossRefGoogle Scholar
  31. 31.
    Feng K et al (2008) Electrochemical immunosensor with aptamer-based enzymatic amplification. Anal Biochem 378(1):38–42CrossRefGoogle Scholar
  32. 32.
    He P et al (2007) Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal Chem 79(21):8024–8029CrossRefGoogle Scholar
  33. 33.
    Li B et al (2008) Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosens Bioelectron 23(7):965–970CrossRefGoogle Scholar
  34. 34.
    Numnuam A et al (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80(3):707–712CrossRefGoogle Scholar
  35. 35.
    Xiao Y et al (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem 44(34):5456–5459CrossRefGoogle Scholar
  36. 36.
    Xiao Y et al (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127(51):17990–17991CrossRefGoogle Scholar
  37. 37.
    Baker BR et al (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128(10):3138–3139CrossRefGoogle Scholar
  38. 38.
    Baldrich E et al (2005) Displacement enzyme linked aptamer assay. Anal Chem 77(15):4774–4784CrossRefGoogle Scholar
  39. 39.
    Hansen JA et al (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128(7):2228–2229CrossRefGoogle Scholar
  40. 40.
    Wu ZS et al (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79(7):2933–2939CrossRefGoogle Scholar
  41. 41.
    Feng K, Sun C, Kang Y, Chen J, Jiang J, Shen G, Yu R (2008) Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem Commun 10:531–535CrossRefGoogle Scholar
  42. 42.
    Niazi JH, Lee SJ, Gu MB (2008) Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg Med Chem 16(15):7245–7253CrossRefGoogle Scholar
  43. 43.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefGoogle Scholar
  44. 44.
    Park JW et al (2004) Electrochemical detection of nonlabeled oligonucleotide DNA using biotin-modified DNA(ss) on a streptavidin-modified gold electrode. J Biosci Bioeng 97(1):29–32Google Scholar
  45. 45.
    Turku I, Sainio T, Paatero E (2007) Thermodynamics of tetracycline adsorption on silica. Environ Chem Lett 5:225–228CrossRefGoogle Scholar
  46. 46.
    Kim YS et al (2007) Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 22(11):2525–2531CrossRefGoogle Scholar
  47. 47.
    Kim YS, Niazi JH, Gu MB (2009) Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal Chim Acta 634(2):250–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yoon-Jin Kim
    • 1
  • Yeon Seok Kim
    • 1
  • Javed H. Niazi
    • 1
  • Man Bock Gu
    • 1
  1. 1.School of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea

Personalised recommendations