Bioprocess and Biosystems Engineering

, Volume 33, Issue 5, pp 541–547 | Cite as

Optical device for parallel online measurement of dissolved oxygen and pH in shake flask cultures

  • Konstantin Schneider
  • Verena Schütz
  • Gernot Thomas John
  • Elmar Heinzle
Original Paper


We describe a new device with parallel optical measurement of dissolved oxygen (DO) and pH in up to nine shake flasks applicable in any conventional shaking incubator. Measurement ranges are 0–500% of air saturation for oxygen and 5.5–8.5 for pH. It was used to characterize growth profiles of different l-lysine producing strains of Corynebacterium glutamicum, of Saccharomyces cerevisiae and of Escherichia coli. Cultures in unbaffled flasks were highly reproducible. Oxygen limitation was indicated online which is particularly important when cultivating fast growing cells as E. coli. C. glutamicum strains showed distinct characteristic patterns of DO and pH indicating biological events. During the cultivation of S. cerevisiae on glucose, fructose and galactose, oxygen uptake rate was determined using the predetermined value of k L a. pH measurement was used to determine the minimum buffer requirement for a culture of C. glutamicum.


Shake flask Optode Dissolved oxygen pH Online measurement 


  1. 1.
    Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98CrossRefGoogle Scholar
  2. 2.
    Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68:5843–5859CrossRefGoogle Scholar
  3. 3.
    Zimmermann HF, Anderlei T, Büchs J, Binder M (2006) Oxygen limitation is a pitfall during screening for industrial strains. Appl Microbiol Biotechnol 72:1157–1160CrossRefGoogle Scholar
  4. 4.
    Dominguez H, Nezondet C, Lindley ND, Cocaign M (1993) Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett 15:449–454CrossRefGoogle Scholar
  5. 5.
    Varma A, Boesch BW, Palsson BO (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465–2473Google Scholar
  6. 6.
    Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194CrossRefGoogle Scholar
  7. 7.
    Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358CrossRefGoogle Scholar
  8. 8.
    Henzler HJ, Schedel M (1991) Suitability of the shaking flask for oxygen supply to microbiological cultures. Bioprocess Eng 7:123–131CrossRefGoogle Scholar
  9. 9.
    Maier U, Büchs J (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106CrossRefGoogle Scholar
  10. 10.
    John GT, Klimant I, Wittmann C, Heinzle E (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol Bioeng 81:829–836CrossRefGoogle Scholar
  11. 11.
    Wittmann C, Kim HM, John G, Heinzle E (2003) Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks. Biotechnol Lett 25:377–380CrossRefGoogle Scholar
  12. 12.
    Vasala A, Panula J, Bollok M, Illmann L, Halsig C, Neubauer P (2006) A new wireless system for decentralised measurement of physiological parameters from shake flasks. Microb Cell Fact 5:8CrossRefGoogle Scholar
  13. 13.
    Velagapudi VR, Wittmann C, Schneider K, Heinzle E (2007) Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J Biotechnol 132:395–404CrossRefGoogle Scholar
  14. 14.
    Krömer JO, Fritz M, Heinzle E, Wittmann C (2005) In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal Biochem 340:171–173CrossRefGoogle Scholar
  15. 15.
    Velagapudi VR, Wittmann C, Lengauer T, Talwar P, Heinzle E (2006) Metabolic screening of Saccharomyces cerevisiae single knockout strains reveals unexpected mobilization of metabolic potential. Process Biochem 41:2170–2179CrossRefGoogle Scholar
  16. 16.
    Furukawa K, Heinzle E, Dunn IJ (1983) Influence of oxygen on the growth of Saccharomyces cerevisiae in continuous culture. Biotechnol Bioeng 25:2293–2317CrossRefGoogle Scholar
  17. 17.
    Lakowicz J (1999) Principles of fluorescence spectroscopy, 2nd edn edn. Kluwer Academic, New YorkGoogle Scholar
  18. 18.
    Tolosa L, Kostov Y, Harms P, Rao G (2002) Noninvasive measurement of dissolved oxygen in shake flasks. Biotechnol Bioeng 80:594–597CrossRefGoogle Scholar
  19. 19.
    Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73:4354–4363CrossRefGoogle Scholar
  20. 20.
    Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5:1197–1204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Konstantin Schneider
    • 1
  • Verena Schütz
    • 1
  • Gernot Thomas John
    • 2
  • Elmar Heinzle
    • 1
  1. 1.Biochemical Engineering InstituteSaarland UniversitySaarbrückenGermany
  2. 2.Presens Precision Sensing GmbHRegensburgGermany

Personalised recommendations