Bioprocess and Biosystems Engineering

, Volume 32, Issue 3, pp 369–380 | Cite as

Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells

  • Jacqueline L. Cotter
  • Mari S. ChinnEmail author
  • Amy M. Grunden
Original Paper


Combined gasification and fermentation technologies can potentially produce biofuels from renewable biomass. Gasification generates synthesis gas consisting primarily of CO, CO2, H2, N2, with smaller amounts of CH4, NOx, O2, C2 compounds, ash and tars. Several anaerobic bacteria species can ferment bottled mixtures of pure synthesis gas constituents. However, there are challenges to maintaining culture viability of synthesis gas exposed cells. This study was designed to enhance culture stability and improve ethanol-to-acetate ratios using resting (non-growing) cells in synthesis gas fermentation. Resting cell states were induced in autotrophic Clostridium ljungdahlii cultures with minimal ethanol and acetate production due to low metabolic activity compared to growing cell production levels of 5.2 and 40.1 mM of ethanol and acetate. Clostridium autoethanogenum cultures were not induced into true resting states but did show improvement in total ethanol production (from 5.1 mM in growing cultures to 9.4 in one nitrogen-limited medium) as well as increased shifts in ethanol-to-acetate production ratios.


Clostridium ljungdahlii Clostridium autoethanaogenum Ethanol Acetate Resting cells Non-growing cells 



The authors acknowledge the financial support of the North Carolina State University Faculty Research and Professional Development Grant.


  1. 1.
    Abrini J, Naveau H, Nyns E (1994) Arch Microbiol 161:345–351CrossRefGoogle Scholar
  2. 2.
    Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Appl Biochem Biotechnol 28:363–378CrossRefGoogle Scholar
  3. 3.
    Berberich JA, Knutson BL, Strobel HJ, Tarhan S, Nokes SE, Dawson KA (2000) Ind Eng Chem Res 39:4500–4505CrossRefGoogle Scholar
  4. 4.
    Bryant MP (1972) Am J Clin Nutr 25:1324–1328Google Scholar
  5. 5.
    Cotter PD, Hill C (2003) Microbiol Mol Biol Rev 67(3):429–453CrossRefGoogle Scholar
  6. 6.
    Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Biotechnol Bioeng 86(5):587–594CrossRefGoogle Scholar
  7. 7.
    Eriksson T, Borjesson J, Tjerneld F (2002) Enzyme Microb Technol 31(3):353–364CrossRefGoogle Scholar
  8. 8.
    Förberg C, Enfors SO, Haggstrom L (1983) Appl Microbiol Biotechnol 17(3):143–147CrossRefGoogle Scholar
  9. 9.
    Fordyce AM, Crow VL, Thomas TD (1984) Appl Environ Microbiol 48(2):332–337Google Scholar
  10. 10.
    Gaddy JL, Clausen EC (1992) US Pataent 612:221Google Scholar
  11. 11.
    Gottwald M, Gottschalk G (1985) Arch Microbiol 143:42–46CrossRefGoogle Scholar
  12. 12.
    Kini KA, Lahiri A (1975) J Sci Ind Res 34(2):97–99Google Scholar
  13. 13.
    Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1992) Enzyme Microb Technol 14:602–608CrossRefGoogle Scholar
  14. 14.
    Larsson C, Stockar U, Marison I, Gustafsson L (1993) J Bacteriol 175(15):4809–4816Google Scholar
  15. 15.
    Lebloas P, Guilbert N, Loubiere P, Lindley ND (1993) J Gen Microbiol 139:1861–1868Google Scholar
  16. 16.
    Mielenz JR (2001) Curr Opin Microbiol 4(3):324–329CrossRefGoogle Scholar
  17. 17.
    Monot F, Engasser JM (1983) Biotechnol Lett 5(4):213–218CrossRefGoogle Scholar
  18. 18.
    Najafpour G, Younesi H (2006) Enzyme Microb Technol 38:223–228CrossRefGoogle Scholar
  19. 19.
    Padan E, Zilberstein D, Schuldiner S (1981) Biochim Biophys Acta 650:151–166Google Scholar
  20. 20.
    Phillips JR, Clausen EC, Gaddy JL (1994) Appl Biochem Biotechnol 45(46):145–157CrossRefGoogle Scholar
  21. 21.
    Rao G, Mutharasan R (1987) Appl Environ Microbiol 53(6):1232–1235Google Scholar
  22. 22.
    Rao G, Mutharasan R (1988) Biotechnol Lett 10(2):129–132CrossRefGoogle Scholar
  23. 23.
    Saha SK, Sivasanker S (1992) Indian J Technol 30(2):71–76Google Scholar
  24. 24.
    Stiles AB, Chen F, Harrison JB, Hu X, Storm DA, Yang HX (1991) Ind Eng Chem Res 30(5):811–821CrossRefGoogle Scholar
  25. 25.
    Tanner RS, Miller LM, Yang D (1993) Int J Syst Bacteriol 43(2):232–236CrossRefGoogle Scholar
  26. 26.
    Terracciano JS, Kashket ER (1986) Appl Environ Microbiol 52(1):86–91Google Scholar
  27. 27.
    Thomsson E, Larsson C, Albers E, Nilsson A, Franzén GL (2003) Appl Environ Microbiol 69(6):3251–3257CrossRefGoogle Scholar
  28. 28.
    Vasconcelos I, Girbal L, Soucaille P (1994) J Bacteriol 176(3):1443–1450Google Scholar
  29. 29.
    Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) Appl Biochem Biotechnol 20(21):781–789CrossRefGoogle Scholar
  30. 30.
    White H, Lebertz H, Thanos I, Simon H (1987) FEMS Microbiol Lett 43(2):173–176CrossRefGoogle Scholar
  31. 31.
    Ying Z, Yang ST (2004) J Biotechnol 110(2):143–157CrossRefGoogle Scholar
  32. 32.
    Younesi H, Najafpour G, Mohamed AR (2005) Biochem Eng J 27:110–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jacqueline L. Cotter
    • 1
  • Mari S. Chinn
    • 1
    Email author
  • Amy M. Grunden
    • 2
  1. 1.Department of Biological and Agricultural EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Department of MicrobiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations