Bioprocess and Biosystems Engineering

, Volume 32, Issue 2, pp 241–248

Determination of the average shear rate in a stirred and aerated tank bioreactor

  • Alexandre Campesi
  • Marcel O. Cerri
  • Carlos O. Hokka
  • Alberto C. Badino
Original Paper


A method for evaluating the average shear rate (\( \dot \gamma _{{\text{av}}} \)) in a stirred and aerated tank bioreactor has been proposed for non-Newtonian fluids. The volumetric oxygen transfer coefficient (kLa) was chosen as the appropriate characteristic parameter to evaluate the average shear rate (\( \dot \gamma _{{\text{av}}} \)). The correlations for the average shear rate as a function of N and rheological properties of the fluid (K and n) were obtained for two airflow rate conditions (ϕair). The shear rate values estimated by the proposed methodology lay within the range of the values calculated by classical correlations. The proposed correlations were utilized to predict the \( \dot \gamma _{{\text{av}}} \) during the Streptomyces clavuligerus cultivations carried out at 0.5 vvm and four different rotational impeller speeds. The results show that the values of the average shear rate (\( \dot \gamma _{{\text{av}}} \)) varied from 437 to 2,693 s−1 by increasing with N and flow index (n) and decreasing with the fluid consistency index (K).


Average shear rate Conventional bioreactor Mass transfer Mixing Non-Newtonian fluid Rheology 

List of symbols

a, b, c

parameters of Eq. 10

d, e, f

parameters of Eq. 12


dissolved oxygen concentration (mmol L−1)


dissolved oxygen concentration at t = t0 (mmol L−1)


saturation concentration of dissolved oxygen with air (mmol L−1)


impeller diameter (m)


constant of the oxygen probe (s−1)


proportionality constant


volumetric oxygen transfer coefficient (s−1)


consistency index (Pa sn)


flow index


rotational impeller speed (rpm)


volumetric flow rate (m3 s−1)


power input (W)


time (“s” in the equation 6 and “h” in the Fig. 4)


superficial gas velocity in the riser region (m s−1)


working volume (m3)

Greek symbols


specific air flow rate (vvm)

\( \dot \gamma \)

shear rate (s−1)

\( \dot \gamma _{{{\text{av}}}} \)

average shear rate (s−1)

\( \dot \gamma _{{\max }} \)

maximum shear rate (s−1)


dynamic viscosity (Pa s)


apparent viscosity (Pa s)


dynamic viscosity of liquid (Pa s)


surface tension of fluid (N m−1)


shear stress (Pa)


response time (s)


  1. 1.
    Badino AC, Facciotti MCR, Schmidell W (2001) Volumetric oxygen transfer coefficients (kla) in batch cultivations involving non-newtonian broths. Biochem Eng J 8:111–119CrossRefGoogle Scholar
  2. 2.
    Belmar-Beiny MT, Thomas CR (1991) Morphology and clavulanic acid production of streptomyces clavuligerus: effect of stirred speed in batch fermentations. Biotechnol Bioeng 37:456–462CrossRefGoogle Scholar
  3. 3.
    Blažej M, Juraščík M, Annus J, Markoš J (2004) Measurement of mass transfer coefficient in an airlift reactor with internal loop using coalescent and non-coalescent liquid media. J Chem Technol Biotechnol 79:1405–1411CrossRefGoogle Scholar
  4. 4.
    Bowen RL (1986) Unraveling the mysteries of shear-sensitive mixing systems. Chem Eng 93:55–63Google Scholar
  5. 5.
    Calderbank PH, Moo-Young MB (1959) The prediction of power consumption in the agitation of non-Newtonian fluids. Chem Eng Res Des 37:26–33Google Scholar
  6. 6.
    Cerri MO, Futiwaki L, Jesus CDF, Cruz AJG, Badino AC (2008) Average shear rate for non Newtonian fluids in a concentric-tube airlift bioreactor. Biochem Eng J 39:51–57CrossRefGoogle Scholar
  7. 7.
    Chisti MY, Moo-Young M (1987) Airlift reactors: characteristics, applications and design considerations. Chem Eng Comm 60:195–242CrossRefGoogle Scholar
  8. 8.
    Chisti Y (2001) Hydrodynamic damage to animal cells. Crit Rev Biotechnol 21:67–110CrossRefGoogle Scholar
  9. 9.
    Gavrilescu M, Roman RV, Efimov V (1993) The volumetric oxygen mass transfer coefficient in antibiotic biosynthesis liquids. Acta Biotechnol 13:59–70CrossRefGoogle Scholar
  10. 10.
    Hoffmann J, Buescher K, Hempel DC (1995) Determination of maximum shear-stress in stirred vessels. Chem Ing Tech 67:210–214CrossRefGoogle Scholar
  11. 11.
    Kawase K, Hashiguchi N (1996) Gas-liquid mass transfer in external-loop airlift columns with Newtonian and non-Newtonian fluids. Chem Eng J 62:35–42Google Scholar
  12. 12.
    Kelly W, Gigas B (2003) Using CFD to predict the behavior of power law fluids near axial-flow impellers operation in the transitional flow regime. Chem Eng Sci 58:2141–2152CrossRefGoogle Scholar
  13. 13.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Mathem 11:431–441CrossRefGoogle Scholar
  14. 14.
    Metzner AB, Otto RE (1957) Agitation of non-Newtonian fluids. Am Inst Chem Eng J 3:3–10Google Scholar
  15. 15.
    Metzner AB, Feehs RH, Ramos LH, Tuthill Otto RE, JB (1961) Agitation of viscous Newtonian and non-Newtonian fluids. Am Inst Chem Eng J 7:3–9Google Scholar
  16. 16.
    Pérez JAS, Porcel EMR, López JLC, Sevilla JMF, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5CrossRefGoogle Scholar
  17. 17.
    Robertson B, Ulbrecht JJ (1987) Measurement of shear rate on an agitator in a fermentation broth, In: Ho CS, Oldshue JY (ed), Biotechnology Processes, Am Inst Chem Eng, New YorkGoogle Scholar
  18. 18.
    Rosa JC, Baptista-Neto A, Hokka CO, Badino AC (2005) Influence of dissolved oxygen and shear conditions on clavulanic acid production by Streptomyces clavuligerus. Bioproc Biosyst Eng 27:99–104CrossRefGoogle Scholar
  19. 19.
    Wichterle K, Kadlec M, Zak L, Mitschka P (1984) Shear rates on turbine impeller blades. Chem Eng Comm 26:25–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alexandre Campesi
    • 1
  • Marcel O. Cerri
    • 1
  • Carlos O. Hokka
    • 1
  • Alberto C. Badino
    • 1
  1. 1.Department of Chemical EngineeringFederal University of S. CarlosSao CarlosBrazil

Personalised recommendations