Bioprocess and Biosystems Engineering

, Volume 31, Issue 3, pp 193–205 | Cite as

Application of an improved continuous parallel shaken bioreactor system for three microbial model systems

  • Ali Akgün
  • Carsten Müller
  • Ramona Engmann
  • Jochen BüchsEmail author
Original Paper


A continuous parallel shaken bioreactor system, combining the advantages of shaken bioreactors with the advantages of continuous fermentation, was specifically manufactured from quartz glass and provides a geometric accuracy of <1 mm. Two different model systems (facultative anaerobic bacterium C. glutamicum, and Crabtree-negative yeast P. stipitis), whose growth behaviour and metabolite formation are affected by dilution rate and oxygen availability, were studied. The transition from non-oxygen to limited conditions as function of the dilution rate could precisely be predicted applying the approach described by Maier et al. (Biochem Eng J 17:155–167, 2004). In addition, the Crabtree-positive yeast S. cerevisiae was simultaneously studied in the continuous parallel shaken bioreactor system and in a conventional 1-L bioreactor, for comparison. Essentially the same results were obtained in both types of bioreactors. However, many more reading points were obtained with the parallel shaken bioreactor system in the same time at much lower consumption of culture media.


Continuous fermentation Parallel operation Medium consumption Oxygen transfer rate Crabtree-effect Shaking parameters 

List of symbols


dilution rate (1/h)


critical dilution rate (1/h)


orbital shaking diameter (mm)


froude number (–)


gravitational force (m/s2)


shaking frequency (rpm)


oxygen transfer rate [mol/(L h)]


maximum oxygen transfer capacity [mol/(L h)]


maximum oxygen transfer rate required at a specific dilution rate [mol/(L h)]


temperature (°C)


filling volume (mL)


oxygen consumption per mol glucose (mol/mol)


glucose-dependent biomasss yield (g/g)


maximum specific growth rate (1/h)


inner diameter of hoses (mm)



The studies related to the development of the continuous parallel shaken bioreactor system were supported financially by Deutsche Bundesstiftung Umwelt (DBU).


  1. 1.
    Akgün A, Maier B, Preis D, Roth B, Klingelhöfer R, Büchs J (2004) A novel parallel shaken bioreactor system for continuous operation. Biotechnol Prog 20:1718–1724CrossRefGoogle Scholar
  2. 2.
    Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7:157–162CrossRefGoogle Scholar
  3. 3.
    Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194CrossRefGoogle Scholar
  4. 4.
    Anderson PA (1953) Automatic recording of the growth rates of continuously cultured microorganisms. J Gen Physiol 36:733–780CrossRefGoogle Scholar
  5. 5.
    Atkinson B, Mavituna F (1983) Biochemical engineering and biotechnology handbook. Macmillan, SurreyGoogle Scholar
  6. 6.
    Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5:21CrossRefGoogle Scholar
  7. 7.
    Büchs J, Maier U, Lotter St, Peter CP (2007) Calculating liquid distribution in shake flasks on rotary shakers at waterlike viscosities. Biochem Eng Sci 34(3):200–208CrossRefGoogle Scholar
  8. 8.
    Büchs J, Mozes N, Wandrey C, Rouxhet PG (1988) Cell adsorption control by culture conditions. Appl Microbiol Biotechnol 29:119–128Google Scholar
  9. 9.
    Calcott PH (1981) Continuous culture: where it came from and where it is now. In: Calcott PH (ed) Continuous culture of cells, vol 1. CRC Press Inc., Boca Raton, pp 1–11Google Scholar
  10. 10.
    Clark GJ, Langley ME (1995) Bushell, oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture. Microbiology 141:663–669CrossRefGoogle Scholar
  11. 11.
    Dellweg H, Rizzi M, Methner H, Debus D (1984) Xylose fermentation by yeasts. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol Lett 6:395–400CrossRefGoogle Scholar
  12. 12.
    Dominguez H, Nezondet C, Lindley ND, Cocaign M (1993) Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett 15:449–454CrossRefGoogle Scholar
  13. 13.
    Duetz WA, Witholt B (2004) Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions. Biochem Eng J 17:181–185CrossRefGoogle Scholar
  14. 14.
    Eikmanns BJ, Kircher M, Reinscheid DJ (1991) Discrimination of Corynebacterium glutamicum, Brevibacterium flavum and Brevibacterium lactofermentum by restriction pattern analysis of DNA adjacent to the hom gene. FEMS Microbiol Lett 66:203–207CrossRefGoogle Scholar
  15. 15.
    Evans CGT, Herbert D, Tempest DW (1970) Continuous cultivation of microorganisms 2. Construction of a chemostat. In: Norris JR (ed) Methods in microbiology, vol 2. Microbiol Res Establ, Porton, pp 277–327Google Scholar
  16. 16.
    Fiaux J, Cakar ZP, Sonderegger M, Wuthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180CrossRefGoogle Scholar
  17. 17.
    Fiechter A, Meiners M, Moser A (1994) Biologische regulation und prozessführung. Handbuch der Biotechnologie, 4th edn. Oldenbourg Verlag München, Wien, pp 313–372Google Scholar
  18. 18.
    Fiechter A, Rieger M, Kappeli O (1983) The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae. J Gen Microbiol 129:653–661Google Scholar
  19. 19.
    Fraleigh SP, Bungay HR, Clesceri LS (1989) Continuous culture, feedback control and auxostats. Trends Biotechnol 7:159–164CrossRefGoogle Scholar
  20. 20.
    Gelinas P, Goulet J (1991) Morphology of baker’s yeast and dissolved oxygen saturation during fed-batch growth. Lett Appl Microbiol 12:164–170CrossRefGoogle Scholar
  21. 21.
    Gu MB, Dhurjati S, Van-Dyk TK, LaRossa RA (1996) A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol Prog 12:393–397CrossRefGoogle Scholar
  22. 22.
    Herbert D, Elsworth R, Telling RC (1956) The continuous culture of bacteria, a theoretical and experimental study. J Gen Microbiol 14:601–622Google Scholar
  23. 23.
    Herbert D, Phipps PJ, Tempest DW (1965) Chemostat-design and instrumentation. Lab Pract 14:1150–1161Google Scholar
  24. 24.
    Hermann R, Walther N, Maier U, Buechs J (2001) Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation. Biotechnol Bioeng 74:355–363CrossRefGoogle Scholar
  25. 25.
    Karow EO, Bartholomew WH, Sfat MR (1953) Oxygen transfer an agitation in submerged fermentations. J Agric Food Chem 1:302CrossRefGoogle Scholar
  26. 26.
    Losen M, Frölich B, Pohl M, Büchs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20:1062–1068CrossRefGoogle Scholar
  27. 27.
    Maier U, Büchs J (2001) Characterisation of the gas–liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106CrossRefGoogle Scholar
  28. 28.
    Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas-liquid mass transfer in shake flasks. Biochem Eng J 17:155–167CrossRefGoogle Scholar
  29. 29.
    Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–6CrossRefGoogle Scholar
  30. 30.
    Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68(4): 475–480CrossRefGoogle Scholar
  31. 31.
    Passoth V, Cohn M, Schafer B, Hahn-Hagerdal B, Klinner U (2003) Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast 20:39–51CrossRefGoogle Scholar
  32. 32.
    Rose HA, Harrison JS (1987) The yeast. Academic Press inc., LondonGoogle Scholar
  33. 33.
    Sipkema EM, De Koning W, Ganzeveld KJ, Janssen DB, Beenackers A (1998) Experimental pulse technique for microbial kinetics in continuous culture. J Biotechnol 64:159–176CrossRefGoogle Scholar
  34. 34.
    Strohm J, Dale RF, Peppler HJ (1959) Polarographic measurement of dissolved oxygen in yeast fermentations. Appl Microbiol 7:235Google Scholar
  35. 35.
    Stöckmann Ch, Losen M, Dahlems U, Knocke Ch, Gellissen G, Büchs J (2003) Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 4:195–205CrossRefGoogle Scholar
  36. 36.
    Tempest DW (1969) The continuous cultivation of microorganisms I. Theory of the chemostat. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 2. Microbiol Res Establ, Porton, pp 260–276Google Scholar
  37. 37.
    Van Urk H, Voll WS, Scheffers WA, Van Dijken JP (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56:281–287Google Scholar
  38. 38.
    Walther I, van der Schoot BH, Jeanneret S, Arquint P, de Rooij NF, Gass V, Bechler B, Lorenzi G, Cogoli A (1994) Development of a miniature bioreactor for continuous culture in a space laboratory. J Biotechnol 38:21–32CrossRefGoogle Scholar
  39. 39.
    Whiteley M, Brown E, McLean JCR (1997) An inexpensive chemostat apparatus for the study of microbial biofilms. J Microbiol Methods 30:125–132CrossRefGoogle Scholar
  40. 40.
    Zhang Z, Boccazzi P, Choi H-G, Perozziello G, Sinskey AJ, Jensen KF (2006) Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 6:906–913CrossRefGoogle Scholar
  41. 41.
    Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas–liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ali Akgün
    • 1
  • Carsten Müller
    • 1
  • Ramona Engmann
    • 1
  • Jochen Büchs
    • 1
    Email author
  1. 1.Biochemical EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations