Advertisement

Bioprocess and Biosystems Engineering

, Volume 31, Issue 5, pp 419–426 | Cite as

Kinetics of infective juvenile production of the entomopathogenic nematode Steinernema carpocapsae in submerged monoxenic culture

  • Norberto Chavarría-HernándezEmail author
  • Marco-Antonio Islas-López
  • Gabriela Maciel-Vergara
  • Martha Gayosso-Canales
  • Adriana-Inés Rodríguez-Hernández
Original Paper

Abstract

The effects of culture medium formulations on the kinetics of infective juvenile (IJ) production of the entomopathogenic nematode Steinernema carpocapsae in submerged monoxenic culture, were studied at the cylindrical-bottle scale using six culture media containing agave juice from Agave spp. among other ingredients. The IJ production kinetics was well modelled through a re-parameterised 3-parameter Gompertz model with kinetic parameters: IJ-lag phase λ IJ (day), maximum IJ-stage production rate m max (day−1), and IJ-multiplication factor (C IJ/C IJ,0)max(−). The variation of λ IJ was not very important within fermentations (10.3–16.2 days); nonetheless, important effects were observed on m max (32.8–241.2 days−1) and (C IJ/C IJ,0)max (66(−) to 611.4(−)). Particularly, maximum values of m max and (C IJ/C IJ,0)max were obtained in medium A4 (0.276 l l−1 agave juice, 17 g l−1 yeast extract, 12 g l−1 dried egg yolk, 0.025 l l−1 corn oil). Also, the maximum IJ concentration (249,444 per ml) was achieved in A4-fermentations.

Keywords

Bio-insecticides Nematode mass production Culture medium Agave juice Kinetics modelling 

Abbreviations

C

total nematode concentration (individuals ml−1)

CIJ

infective juvenile stage concentration (individuals ml−1)

CIJ,0

initial infective juvenile stage concentration (individuals ml−1)

CIJ,max

maximum infective juvenile stage concentration (individuals ml−1)

(CIJ/CIJ,0)

dimensionless infective juvenile stage concentration (−)

(CIJ/CIJ,0)max

infective juvenile stage multiplication factor (−)

[d(CIJ/CIJ,0)/dt]max or mmax

maximum infective juvenile stage production rate (day−1)

λIJ

infective juvenile stage lag time (day)

λIJ,min

minimum infective juvenile stage lag time (day)

λIJ,max

maximum infective juvenile stage lag time (day)

Notes

Acknowledgments

The authors thank financial support of Fondos Mixtos-Consejo Nacional de Ciencia y Tecnología-Gobierno del Estado de Hidalgo, México (Grant 200201-9206), and PIFI P/CA-3 2006-14-04 “Consolidación del Cuerpo Académico de Biotecnología Agroalimentaria”. Many thanks to Ometeotl-AC, Tlaxcala, México, for the agave juice supply. Technical assistance of R. Sanjuan-Galindo and molecular identification of the symbiotic bacterium by the group of Dr. Wacher-Rodarte are deeply acknowledged.

References

  1. 1.
    FAO (2002) Early warning on hazardous pesticides. Agriculture 21. http://www.fao.org/ag/magazine/0205sp2test.htm. Last access: 21 Oct 2007
  2. 2.
    Donaldson D, Kiely T, Grube A (2002) Pesticides industry sales and usage. 1998 and 1999 market estimates. US-EPA, WashingtonGoogle Scholar
  3. 3.
    Shapiro-llan DI, Gaugler R (2002) Production technology for entomopathogenic nematodes and their bacterial symbionts. J Ind Microbiol Biotechnol 28:137–146CrossRefGoogle Scholar
  4. 4.
    Woodring JL, Kaya HK (1988) Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques. Arkansas Agric. Exp. Stn, USAGoogle Scholar
  5. 5.
    Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633CrossRefGoogle Scholar
  6. 6.
    Chavarría-Hernández N, Espino-García JJ, Sanjuan Galindo R, Rodríguez-Hernández AI (2006) Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey. Kinetics and modeling. J Biotechnol 19:405–409Google Scholar
  7. 7.
    SIP-Society for Invertebrate Pathology (2006) Nematodes. http://www.sipweb.org/DirectoryMCP/nematodes.htm. Last access: 21 Oct 2007
  8. 8.
    Chavarría-Hernández N, de la Torre M (2001) Population growth kinetics of the nematode, Steinernema feltiae, in submerged monoxenic culture. Biotechnol Lett 23:311–315CrossRefGoogle Scholar
  9. 9.
    Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309Google Scholar
  10. 10.
    Buecher EJ, Popiel I (1989) Liquid culture of the entomogenous nematode Steinernema feltiae with its bacterial symbiont. J Nematol 21:500–504Google Scholar
  11. 11.
    Islas-López MA, Sanjuan-Galndo R, Hernández-Rodríguez AI, Chavarría-Hernández N (2005) Monoxenic production of the entomopathogenic nematode Steinernema carpocapsae using culture media containing agave juice (aguamiel) from Mexican maguey-pulquero (Agave spp). Effects of the contents of nitrogen, carbohydrates and fat on infective juvenile production. Appl Microbiol Biotechnol 68:91–97CrossRefGoogle Scholar
  12. 12.
    Surrey MR, Davies RJ (1996) Pilot-scale liquid culture and harvesting of an entomopathogenic nematode, Heterorhabditis bacteriophora. J Invertebr Pathol 67:92–99CrossRefGoogle Scholar
  13. 13.
    AOAC International (1999) Official methods of analysis of AOAC International. AOAC International, USAGoogle Scholar
  14. 14.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  15. 15.
    Neves JM, Teixeira JA, Simões N, Mota M (2001) Effect or airflow rate on yields of Steinernema carpocapsae Az 20 in liquid culture in an external-loop airlift bioreactor. Biotechnol Bioeng 72:369–373CrossRefGoogle Scholar
  16. 16.
    Yoo SK, Brown I, Gaugler R (2000) Liquid media development for Heterorhabditis bacteriophora: lipid source and concentration. Appl Microbiol Biotechnol 54:759–763CrossRefGoogle Scholar
  17. 17.
    Farrera RR, Pérez-Guevara F, de la Torre M (1998) Carbon:nitrogen ratio interacts with initial concentration of total solids on insecticidal crystal protein and spore production in Bacillus thuringiensis HD-73. Appl Microbiol Biotechnol 49:758–765CrossRefGoogle Scholar
  18. 18.
    Anderson TB (1990) Effects of carbon:nitrogen ratio and oxygen on the growth kinetics of Bacillus thuringiensis and yield of bioinsecticidal crystal protein. Master of Science thesis. University of Western OntarioGoogle Scholar
  19. 19.
    Sánchez-Marroquín A, Hope PH (1953) Agave juice. Fermentation and chemical composition studies of some species. Agric Food Chem 1:246–249CrossRefGoogle Scholar
  20. 20.
    Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887CrossRefGoogle Scholar
  21. 21.
    Wright DJ, Perry RN (2002) Physiology and biochemistry. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Norberto Chavarría-Hernández
    • 1
    Email author
  • Marco-Antonio Islas-López
    • 1
    • 2
  • Gabriela Maciel-Vergara
    • 1
  • Martha Gayosso-Canales
    • 1
  • Adriana-Inés Rodríguez-Hernández
    • 1
  1. 1.Cuerpo Académico de Biotecnología Agroalimentaria. Centro de Investigaciones en Ciencia y Tecnología de los Alimentos del Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoHidalgoMéxico
  2. 2.Universidad de la CañadaOaxacaMéxico

Personalised recommendations