Bioprocess and Biosystems Engineering

, Volume 31, Issue 4, pp 369–377

Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters

  • Magnus Bertilsson
  • Jonas Andersson
  • Gunnar Lidén
Original Paper


A kinetic model for glucose and xylose co-substrate uptake in Saccharomyces cerevisiae is presented. The model couples the enzyme kinetics with the glucose-dependent genetic expression of the individual transport proteins. This novel approach implies several options for optimizing the co-substrate utilization. Interestingly, the simulations predict a maximum xylose uptake rate at a glucose concentration >0 g/L, which suggests that the genetic expressions of the considered transport proteins are of importance when optimizing the xylose uptake. This was also evident in fed-batch simulations, where a distinct optimal glucose addition rate >0 g/L·h was found. Strategies for improving the co-substrate utilization by genetic engineering of the transport systems are furthermore suggested based on simulations.


Kinetic modeling Hexose transporters Xylose uptake Saccharomyces cerevisiae 


  1. 1.
    Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323CrossRefGoogle Scholar
  2. 2.
    Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117CrossRefGoogle Scholar
  3. 3.
    Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2 and XKS1 in Mineral Medium Chemostat Cultures. Appl Environ Microbiol 66:3381–3386CrossRefGoogle Scholar
  4. 4.
    Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409CrossRefGoogle Scholar
  5. 5.
    Saloheimo A, Rauta J, Stasyyk OV, Sibirny AA, Penttilä M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052CrossRefGoogle Scholar
  6. 6.
    Lee WJ, Kim MD, Ryu YW, Bisson LF (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191CrossRefGoogle Scholar
  7. 7.
    Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiol 148:2783–2788Google Scholar
  8. 8.
    Bisson LF, Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80(6):1730–1734CrossRefGoogle Scholar
  9. 9.
    Coons DM, Boulton RB, Bisson LF (1995) Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae. J Bacteriol 1177:3251–3258Google Scholar
  10. 10.
    Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeast. FEMS Microbiol Rev 21:85–111CrossRefGoogle Scholar
  11. 11.
    Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292CrossRefGoogle Scholar
  12. 12.
    Özcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572Google Scholar
  13. 13.
    Diderich JA, Schepper M, van Hoek P, Luttik MAH, van Dijken JP, Pronk JT, Klaassen P, Boelens HFM, de Mattos MJT, van Dam K, Kruckeberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359CrossRefGoogle Scholar
  14. 14.
    Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966Google Scholar
  15. 15.
    Johnston M, Flick JS, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14:3834–3841Google Scholar
  16. 16.
    Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283–291Google Scholar
  17. 17.
    Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333CrossRefGoogle Scholar
  18. 18.
    Maier A, Völker B, Boles E, Fuhrmann GF (2002) Characterization of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–550Google Scholar
  19. 19.
    Sedlak M, Ho NWY (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684CrossRefGoogle Scholar
  20. 20.
    Kötter P, Ciriacy M (1992) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783CrossRefGoogle Scholar
  21. 21.
    Özcan S, Johnston M (1999) Function, regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569Google Scholar
  22. 22.
    Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16:157–167CrossRefGoogle Scholar
  23. 23.
    Diderich JA, Schuurmans JM, van Gaalen MC, Kruckeberg AL, van Dam K (2001) Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18:1515–1524CrossRefGoogle Scholar
  24. 24.
    Adams BG (1972) Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol 111:308–315Google Scholar
  25. 25.
    Sonnleitnert B, Käppeli O (1985) Growth of is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937CrossRefGoogle Scholar
  26. 26.
    Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRefGoogle Scholar
  27. 27.
    Meinander NQ, Boels I, Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68:79–87CrossRefGoogle Scholar
  28. 28.
    Pitkänen JP, Aristidou A, Salusjärvi L, Ruohonen L, Penttilä M (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16–31CrossRefGoogle Scholar
  29. 29.
    Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126:488–498CrossRefGoogle Scholar
  30. 30.
    Senac T, Hahn-Hägerdal B (1990) Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56:120–126Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Magnus Bertilsson
    • 1
  • Jonas Andersson
    • 1
  • Gunnar Lidén
    • 1
  1. 1.Department of Chemical EngineeringLund UniversityLundSweden

Personalised recommendations