Bioprocess and Biosystems Engineering

, Volume 30, Issue 3, pp 173–180 | Cite as

Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery

Original Paper

Abstract

The synthesis of modified hydrophobic starch nanoparticles using long chain fatty acids was accomplished. Grafting of fatty acid on the starch was done using potassium persulphate as catalyst and the formation of graft polymer was confirmed by FTIR spectra. The thermal properties of the native and grafted starch were investigated using simultaneous TG-DTA and DSC. The graft polymerization was found to be depending on the temperature and the duration of the reaction. The modified starch nanoparticles were cross-linked with sodium tripoly phosphate for better stabilization. Morphology of the grafted starch nanoparticles was studied by SEM and AFM. Drug-loading and the controlled release of the drug from the nanoparticles was studied using indomethacin as model drug.

Keywords

Chemical modification Grafting Cross-linking Nanoparticle Controlled drug release 

References

  1. 1.
    Li Chen, Xueyu Qiu, Mingxiao Deng, Zhongkui Hong, Rui Luo, Xuesi Chen, Xiabin Jing (2005) Polymer 46:5723Google Scholar
  2. 2.
    Koenig MF, Huang SJ (1995) Polymer 36:1877CrossRefGoogle Scholar
  3. 3.
    Vaidyia UR, Bhattacharya M (1997) J Appl Polym Sci 64:1999CrossRefGoogle Scholar
  4. 4.
    Kweon DK, Lim ST (2001) J Appl Polym Sci 81:2197CrossRefGoogle Scholar
  5. 5.
    Ramani N, Philippe D, Mohan K (1996) US Patent 5578691Google Scholar
  6. 6.
    Ramani N, Philippe D, Mohan K (1997) US Patent 5616617Google Scholar
  7. 7.
    Mohan K, Ramani N (1996) US Patent 5500475Google Scholar
  8. 8.
    Rouilly A, Rigal L, Gilbert RG (2004) Polymer 457:813Google Scholar
  9. 9.
    Albertsson AC, Karlsson S (1995) Acta Polym 46:114CrossRefGoogle Scholar
  10. 10.
    Park YW, Inagaki N (2003) Polymer 44:1569CrossRefGoogle Scholar
  11. 11.
    Combellas C, Fuchs A, Kanoufi F, Mazouzi D, Nunigi S (2004) Polymer 45:4669CrossRefGoogle Scholar
  12. 12.
    Cho CG, Lee K (2002) Carbohydr Polym 48:125CrossRefGoogle Scholar
  13. 13.
    Athawale VD, Lele V (2000) Carbohydr Polym 41:407CrossRefGoogle Scholar
  14. 14.
    Zhai M, Yoshii F, Kume T, Hashim K (2002) Carbohydr Polym 50:295CrossRefGoogle Scholar
  15. 15.
    Athawale VD, Lele VV (1998) Starch Starke 50:426CrossRefGoogle Scholar
  16. 16.
    Reyes Z, Rist CE, Russel CR (1996) J Polym Sci A-1:1031Google Scholar
  17. 17.
    Goni I, Gurruchana M, Valero M, Guzman GM (1983) J Polym Sci Part A Polym Chem 21:2573Google Scholar
  18. 18.
    Thakore IM, Desai A, Iyer S, Lele AK, Devi S (1999) J Appl Polym Sci 74:2791CrossRefGoogle Scholar
  19. 19.
    Thakore IM, Desai S, Sarawade BD, Devi S (1999) J Appl Polym Sci 71:1851CrossRefGoogle Scholar
  20. 20.
    Panyam J et al (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347CrossRefGoogle Scholar
  21. 21.
    Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120CrossRefGoogle Scholar
  22. 22.
    Goheen SM, Wool RP (1996) J Appl Polym Sci 42:2691CrossRefGoogle Scholar
  23. 23.
    Kacurakova M, Wilson RH (2001) Carbohydr Polym 44:291CrossRefGoogle Scholar
  24. 24.
    Marcazzan M, Vianello F, Scarpa M, Rigo A (1999) J Biochem Biophys Methods 38:191CrossRefGoogle Scholar
  25. 25.
    Mostafa KHM, Morsy MS (2004) Polym Int 53:885CrossRefGoogle Scholar
  26. 26.
    Fang JM, Fowler PA, sayers C, Williams PA (2004) Carbohydr Polym 55:283CrossRefGoogle Scholar
  27. 27.
    Poonam Aggarwal, David Dollimore (1998) Thermochim Acta 324:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Chemical Sciences and Technology DivisionRegional Research Laboratory (CSIR)ThiruvananthapuramIndia

Personalised recommendations