Advertisement

Bioprocess and Biosystems Engineering

, Volume 30, Issue 2, pp 115–122 | Cite as

A fermentation system designed to independently evaluate mixing and/or oxygen tension effects in microbial processes: development, application and performance

  • J. A. Rocha-Valadez
  • V. Albiter
  • M. A. Caro
  • L. Serrano-Carreón
  • E. Galindo
Original Paper

Abstract

In order to evaluate the independent effects of hydrodynamic conditions and/or oxygen tension on culture physiology and productivity, a fermentation system designed to control dissolved oxygen at constant power drawn (P/V) was developed. The system included a fully instrumented 14 l bioreactor coupled to a PC for data acquisition and control. Power drawn was measured (using a commercial torquemeter coupled to the shaft) and maintained constant by varying the agitation speed; while gas blending was used to control dissolved oxygen concentration. To validate the system, rheological-complex fermentations involving xanthan gum production and filamentous fungal cultivation (using Xanthomonas campestris and Trichoderma harzianum) were developed. In both cases, and despite the changing environmental conditions (due to increased broth viscosities and microbial respiration), both variables were controlled at the desired set points. Through such a system, a rigorous evaluation of the hydrodynamic conditions and/or oxygen tension on culture physiology and productivity is now feasible.

Keywords

Dissolved oxygen tension (DOT) Fermentation system Power drawn Rheological-complex cultures Trichoderma harzianum Xanthomonas campestris 

Notes

Acknowledgments

The financial support of CONACyT (39906 and U44098), IFS (E/2548-2) and DGAPA-UNAM (226202) is gratefully acknowledged. JARV thanks CONACyT for his postdoctoral fellowship. We thank C. Flores and M. Ortiz for strain maintenance. The technical support of A. Aguilar, R. Godoy and D. Llorente in the construction of the fermentation system is acknowledged with thanks. The authors also thank J.M. Hurtado and S. Ainsworth for computer support and bibliographic assistance.

References

  1. 1.
    Ascanio G, Castro B, Galindo E (2004) Measurement of power consumption in stirred vessels-a review. Trans IChemE Part A 82:1282–1290CrossRefGoogle Scholar
  2. 2.
    Nienow AW (1990) Agitators for mycelial fermentations. TIBTECH 8:224–233Google Scholar
  3. 3.
    Nienow AW (1994) Gas-liquid mixing studies: a comparison of Rushton turbines with some modern impellers. Trans IChemE Part A 74:417–423Google Scholar
  4. 4.
    Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactors, understanding the effects of environmental gradients on cells. Mol Biotechnol 34:365–381CrossRefGoogle Scholar
  5. 5.
    Charles M (1985) Fermentation design and scale-up. In: Moo-Young M (ed) Comprehensive biotechnology, vol. 2. Pergamon Press, OxfordGoogle Scholar
  6. 6.
    Yegneswaran PK, Gray MR, Thompson BG (1991) Effect of the dissolved oxygen control on growth and antibiotic production in Streptomyces clavuligerus fermentations. Biotechnol Prog 7:246–250CrossRefGoogle Scholar
  7. 7.
    Sargantanis IG, Karim MN (1996) Effect of oxygen limitation on β-lactamase production. Biotechnol Prog 12:786–792CrossRefGoogle Scholar
  8. 8.
    Henriksen CM, Nielsen J, Villadsen J (1997) Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures of Penicillium chrysogenum. Biotechnol Prog 13:776–782CrossRefGoogle Scholar
  9. 9.
    Peña C, Trujillo-Roldán MA, Galindo E (2000) Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzyme Microbial Technol 27:390–398CrossRefGoogle Scholar
  10. 10.
    Joshi J, Elias C, Patole M (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Biochem Eng J 62:121–141CrossRefGoogle Scholar
  11. 11.
    Thomas CR, Zhang Z (1998) The effect of hydrodynamics on biological materials. In: Galindo E, Ramírez OT (eds) Adv Bioprocess Eng II. Kluwer, Dordrecht, pp 137–170Google Scholar
  12. 12.
    Nienow AW, Elson TP (1988) Aspects of mixing in rheological-complex fluids. Chem Eng Res Des 66:5–15Google Scholar
  13. 13.
    Nienow AW (1990) Gas dispersion performance in fermenter operation. Chem Eng Progress 86: 61–71Google Scholar
  14. 14.
    Torrestiana B, Galindo E, Xueming Z, Nienow AW (1991) In-fermenter power measurement during a xanthan gum fermentation compared with non-fermentative studies. Trans IChemE Part C 69:149–155Google Scholar
  15. 15.
    Galindo E, Nienow AW, Badham RS (1988) Mixing of simulated xanthan gum broths. In: Proceedings of the 2nd International Conference on Bioreactor Fluid Dynamics, R. King (ed), Cambridge, BHRA. The fluid engineering centre-Elsevier, Amsterdam, pp 65–78Google Scholar
  16. 16.
    Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70:300–312CrossRefGoogle Scholar
  17. 17.
    Buckland BC, Gbewonyo K, DiMasi D, Hunt G, Westerfield G, Nienow AW (1988) Improved performance in viscous mycelial fermentations by agitator retrofitting. Biotechnol Bioeng 31:737–742CrossRefGoogle Scholar
  18. 18.
    Amanullah A, Serrano-Carreón L, Castro B, Galindo E, Nienow AW (1998) The influence of impeller type in pilot scale xanthan fermentations. Biotechnol Bioeng 57:95–108CrossRefGoogle Scholar
  19. 19.
    Grimm LH, Kelly S, Völkerding II, Krull R, Hempel DC (2005) Influence of mechanical stress and surface interaction on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 92:879–888CrossRefGoogle Scholar
  20. 20.
    Makagiansar HY, Ayazi-Shamlou P, Thomas CR, Lilly MD (1993) The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum. Bioprocess Eng 9:83–90CrossRefGoogle Scholar
  21. 21.
    Cui YQ, van der Lans RGJM, Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol Bioeng 55:715–726CrossRefGoogle Scholar
  22. 22.
    Peña C, Galindo E, Díaz M (2002) Effectiveness factor in biological external convection: study in high viscosity systems. J Biotechnol 95:1–12CrossRefGoogle Scholar
  23. 23.
    Jüsten P, Paul GC, Nienow AW, Thomas CR (1998) Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol Bioeng 59:762–775CrossRefGoogle Scholar
  24. 24.
    Amanullah A, Tuttiett B, Nienow AW (1998) Agitator speed and dissolved oxygen effects in xanthan fermentations. Biotechnol Bioeng 57:198–210CrossRefGoogle Scholar
  25. 25.
    Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR (2002) Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 77:815–826CrossRefGoogle Scholar
  26. 26.
    Reyes C, Peña C, Galindo E (2003) Reproducing shake flasks performance in stirred fermentors: production of alginates by Azotobacter vinelandii. J Biotechnol 105:189–198CrossRefGoogle Scholar
  27. 27.
    Stephanopoulos G (1984) Chemical process control. Prentice Hall, Englewoods Cliffs, pp 344–363Google Scholar
  28. 28.
    Serrano-Carreón L, Corona RM, Sánchez A, Galindo E (1998) Prediction of xanthan fermentation development by a model linking kinetics, power drawn and mixing. Process Biochem 33:133–146CrossRefGoogle Scholar
  29. 29.
    Serrano-Carreón L, Flores C, Galindo E (1997) γ-Decalactone production by Trichoderma harzianum in stirred bioreactors. Biotechnol Prog 13:205–208CrossRefGoogle Scholar
  30. 30.
    Lucatero S, Larralde-Corona CP, Corkidi G, Galindo E (2003) Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology. Biotechnol Prog 19:285–292CrossRefGoogle Scholar
  31. 31.
    Galindo E (1994) Aspects of the process for xanthan production. Trans IChemE Part C 72:227–237Google Scholar
  32. 32.
    Rocha-Valadez JA, Hassan M, Corkidi G, Flores C, Galindo E, Serrano-Carreón L (2005) 6-Pentyl-α-pyrone production by Trichoderma harzianum: the influence of energy dissipation rate and its implications on fungal physiology. Biotechnol Bioeng 91:54–61CrossRefGoogle Scholar
  33. 33.
    Riley GL, Tucker KG, Paul GC, Thomas CR (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol Bioeng 68:160–172CrossRefGoogle Scholar
  34. 34.
    Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52:672–684CrossRefGoogle Scholar
  35. 35.
    Onken U, Liefke E (1989) Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes. Adv Biochem Eng Biotechnol 40:137–169Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. A. Rocha-Valadez
    • 1
  • V. Albiter
    • 2
  • M. A. Caro
    • 2
  • L. Serrano-Carreón
    • 1
  • E. Galindo
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMorelosMexico
  2. 2.Unidad de Escalamiento y Planta Piloto, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMorelosMexico

Personalised recommendations