Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum

  • T. Mazzuca Sobczuk
  • F. García Camacho
  • E. Molina Grima
  • Yusuf Chisti
Original paper


The effect of mechanical agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum was investigated in aerated continuous cultures with and without the added shear protectant Pluronic F68. Damage to cells was quantified through a decrease in the steady state concentration of the biomass in the photobioreactor. For a given aeration rate, the steady state biomass concentration rose with increasing rate of mechanical agitation until an upper limit on agitation speed was reached. This maximum tolerable agitation speed depended on the microalgal species. Further increase in agitation speed caused a decline in the steady state concentration of the biomass. An impeller tip speed of >1.56 m s–1 damaged P. tricornutum in aerated culture. In contrast, the damage threshold tip speed for P. cruentum was between 2.45 and 2.89 m s–1. Mechanical agitation was not the direct cause of cell damage. Damage occurred because of the rupture of small gas bubbles at the surface of the culture, but mechanical agitation was instrumental in generating the bubbles that ultimately damaged the cells. Pluronic F68 protected the cells against damage and increased the steady state concentration of the biomass relative to operation without the additive. The protective effect of Pluronic was concentration-dependent over the concentration range of 0.01–0.10% w/v.


Microalgae Phaeodactylum tricornutum Porphyridium cruentum Shear damage Photobioreactors Pluronic 


  1. 1.
    Borowitzka MA (1999) Pharmaceuticals and agrochemicals from microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 313–352Google Scholar
  2. 2.
    Lebeau T, Robert J-M (2003a) Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Appl Microbiol Biotechnol 60:612–623PubMedGoogle Scholar
  3. 3.
    Lebeau T, Robert J-M (2003b) Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl Microbiol Biotechnol 60:624–632PubMedGoogle Scholar
  4. 4.
    Pinto FAL, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy 27:1209–1215CrossRefGoogle Scholar
  5. 5.
    Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279CrossRefPubMedGoogle Scholar
  6. 6.
    Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactors. Bioresource Technol 38:145–151CrossRefGoogle Scholar
  7. 7.
    Molina Grima E, Acién Fernández FG, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247CrossRefGoogle Scholar
  8. 8.
    Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270CrossRefGoogle Scholar
  9. 9.
    Sánchez Mirón A, García Camacho F, Contreras Gómez A, Molina Grima E, Chisti Y (2000) Bubble column and airlift photobioreactors for algal culture. AIChE J 46:1872–1887CrossRefGoogle Scholar
  10. 10.
    Sánchez Mirón A, Cerón García M-C, García Camacho F, Molina Grima E, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: Studies in fed-batch culture. Enzyme Microb Technol 31:1015–1023CrossRefGoogle Scholar
  11. 11.
    Camacho Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473CrossRefPubMedGoogle Scholar
  12. 12.
    Märkl H, Bronnenmeier R, Wittek B (1991) The resistance of microorganisms to hydrodynamic stress. Int Chem Eng 31:185–197Google Scholar
  13. 13.
    Chisti Y (1999) Shear sensitivity. In: Flickinger MC, Drew SW (eds) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, Vol. 5, New York, Wiley, pp 2379–2406Google Scholar
  14. 14.
    Jaouen P, Vandanjon L, Quemeneur F (1999) Stress of microalgal cell suspensions (Tetraselmis suecia) in tangential flow filtration systems: The role of pumps. Bioresour Technol 68:149–154CrossRefGoogle Scholar
  15. 15.
    Vandanjon L, Rossignol N, Jaouen P, Roberts JM, Quéméneur F (1999) Effects of shear on two microalgae species. Contribution of pumps and valves in tangential flow filtration systems. Biotechnol Bioeng 63:1–9CrossRefPubMedGoogle Scholar
  16. 16.
    García Camacho F, Contreras Gómez A, Mazzuca Sobezuk T, Molina Grima E (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochem 35:1045–1050CrossRefGoogle Scholar
  17. 17.
    Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefPubMedGoogle Scholar
  18. 18.
    Silva HJ, Cortiñas T, Ertola RJ (1987) Effect of hydrodynamic stress on Dunaliella growth. J Chem Technol Biotechnol 40:41–49Google Scholar
  19. 19.
    Suzuki T, Matsuo T, Ohtaguchi K, Koide K (1995) Gas-sparged bioreactors for CO2 fixation by Dunaliella tertiolecta. J Chem Technol Biotechnol 62:351–358CrossRefGoogle Scholar
  20. 20.
    Contreras A, García F, Molina E, Merchuk JC (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng 60:318–325CrossRefGoogle Scholar
  21. 21.
    Barbosa MJ, Albrecht M, Wijffels RH (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120CrossRefPubMedGoogle Scholar
  22. 22.
    Emery AN, Lavery M, Williams B, Handa A (1987) Large-scale hybridoma culture. In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Chichester, Ellis Horwood, pp 137–146Google Scholar
  23. 23.
    Martens DE, de Gooijer CD, Beuvery EC, Tramper J (1992) Effect of serum concentration on hybridoma viable cell density and production of monoclonal antibodies in CSTRs and on shear sensitivity in air-lift loop reactors. Biotechnol Bioeng 39:891–897CrossRefGoogle Scholar
  24. 24.
    Tramper J, Joustra D, Vlak JM (1987a) Bioreactor design for growth of shear-sensitive insect cells. In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Chichester, Ellis Horwood, pp 125–136Google Scholar
  25. 25.
    Tramper J, Smit D, Straatman J, Vlak JM (1987b) Bubble column design for growth of fragile insect cells. Bioprocess Eng 2:37–41Google Scholar
  26. 26.
    van der Pol L, Bakker WAM, Tramper J (1992) Effect of low serum concentrations (0%–2.5%) on growth, production, and shear sensitivity of hybridoma cells. Biotechnol Bioeng 40:179–182CrossRefGoogle Scholar
  27. 27.
    Yang JD, Wang NS (1992) Cell inactivation in the presence of sparging and mechanical agitation. Biotechnol Bioeng 40:41–49CrossRefGoogle Scholar
  28. 28.
    Croughan MS, Sayre ES, Wang DIC (1989) Viscous reduction of turbulent damage in animal cell culture. Biotechnol Bioeng 33:862–872CrossRefGoogle Scholar
  29. 29.
    McQueen A, Bailey JE (1989) Influence of serum level, cell line, flow type and viscosity on flow–induced lysis of suspended mammalian cells. Biotechnol Lett 11:531–536CrossRefGoogle Scholar
  30. 30.
    Midler M, Finn RK (1966) A model system for evaluating shear in the design of stirred fermentors. Biotechnol Bioeng 8:71–84CrossRefGoogle Scholar
  31. 31.
    Blackshear PL, Blackshear GL (1987) Mechanical hemolysis. In: Skalak R, Chien S (eds) Handbook of bioengineering. McGraw-Hill, New York, pp 15.1–15.19Google Scholar
  32. 32.
    Chisti Y (2001) Hydrodynamic damage to animal cells. Crit Rev Biotechnol 21:67–110CrossRefPubMedGoogle Scholar
  33. 33.
    Sánchez Mirón A, Cerón García M-C, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297CrossRefGoogle Scholar
  34. 34.
    Chisti Y (1989) Airlift bioreactors. Elsevier, LondonGoogle Scholar
  35. 35.
    Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (eds) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 63–158Google Scholar
  36. 36.
    Philliphs JN, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161CrossRefGoogle Scholar
  37. 37.
    Terry KL (1986) Photosynthesis in modulated light: Quantitative dependence of photosynthesis enhancement on flashing rate. Biotechnol Bioeng 28:988–995CrossRefGoogle Scholar
  38. 38.
    Nedbal L, Tichý V, Grobbelaar JU, Xiong VF, Neori A (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333CrossRefGoogle Scholar
  39. 39.
    Molina Grima E, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Acién Fernández FG, Contreras Gómez A (1994) A mathematical model of microalgal growth in light limited chemostat culture. J Chem Technol Biotechnol 61:167–173CrossRefGoogle Scholar
  40. 40.
    Evers EG (1991) A model for light-limited continuous cultures: growth, shading and maintenance. Biotechnol Bioeng 38:254–259CrossRefGoogle Scholar
  41. 41.
    Mann JE, Myers J (1968) On pigments, growth and photosynthesis of Phaeodactylum tricornutum. J Phycol 4:349–355CrossRefGoogle Scholar
  42. 42.
    Molina Grima E, Acién Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368CrossRefGoogle Scholar
  43. 43.
    Dermoun D, Chaumont D, Thebault J, Dauta A (1992) Modelling of growth of P. cruentum in connection with two interdependent factors: light and temperature. Bioresour Technol 42:113–117CrossRefGoogle Scholar
  44. 44.
    Vonshak A, Cohen Z, Richmond A (1985) The feasibility of mass cultivation of Porphyridium. Biomass 8:13–25CrossRefGoogle Scholar
  45. 45.
    García Camacho F, Molina Grima E, Sánchez Mirón A, González Pascual V, Chisti Y (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microb Technol 29:602–610CrossRefGoogle Scholar
  46. 46.
    Michaels JD, Nowak JE, Malik AK, Koczo K, Wasan DT, Papoutsakis ET (1995a) Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives. Biotechnol Bioeng 47:407–419CrossRefGoogle Scholar
  47. 47.
    Michaels JD, Nowak JE, Malik AK, Koczo K, Wasan DT, Papoutsakis ET (1995b) Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives. Biotechnol Bioeng 47:420–430CrossRefGoogle Scholar
  48. 48.
    Chattopadhyay D, Rathman JF, Chalmers JJ (1995a) The protective effect of specific medium additives with respect to bubble rupture. Biotechnol Bioeng 45:473–480CrossRefGoogle Scholar
  49. 49.
    Chattopadhyay D, Rathman JF, Chalmers JJ (1995b) Thermodynamic approach to explain cell adhesion to air–medium interfaces. Biotechnol Bioeng 48:649–658CrossRefGoogle Scholar
  50. 50.
    Lewin JC, Lewin RA, Philpott DE (1958) Observations on Phaeodactylum tricornutum. J Gen Microbiol 18:418–426PubMedGoogle Scholar
  51. 51.
    Borowitzka MA, Chiappino ML, Volcani BE (1977) Ultrastructure of a chain-forming diatom Phaeodactylum tricornutum. J Phycol 13:162–170Google Scholar
  52. 52.
    Borowitzka MA, Volcani BE (1978) The polymorphic diatom Phaeodactylum tricornutum: ultrastructure of its morphtypes. J Phycol 14:10–21CrossRefGoogle Scholar
  53. 53.
    Papoutsakis ET (1991) Media additives for protecting freely suspended animal cells against agitation and aeration damage. Trends Biotechnol 9:316–325CrossRefPubMedGoogle Scholar
  54. 54.
    Meier SJ, Hatton TA, Wang DIC (1999) Cell death from bursting bubbles: role of cell attachment to rising bubbles in sparged reactors. Biotechnol Bioeng 62:468–478CrossRefPubMedGoogle Scholar
  55. 55.
    Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432CrossRefPubMedGoogle Scholar
  56. 56.
    Handa-Corrigan A, Emery AN, Spier RE (1987) On the evaluation of gas–liquid interfacial effects on hybridoma viability in bubble column bioreactors. Dev Biol Stand 66:241–253PubMedGoogle Scholar
  57. 57.
    Handa-Corrigan A, Emery AN, Spier RE (1989) Effect of gas–liquid interfaces on the growth of suspended mammalian cells: mechanisms of the cell damage by bubbles. Enzyme Microb Technol 11:230–236CrossRefGoogle Scholar
  58. 58.
    Mazzuca Sobczuk T (2003) Influencia de las condiciones hidrodinámicas y de la fracción molar de CO2 en la fase gaseosa sobre el crecimiento celular en cultivos de microalgas. PhD thesis, University of Almería, SpainGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • T. Mazzuca Sobczuk
    • 1
  • F. García Camacho
    • 1
  • E. Molina Grima
    • 1
  • Yusuf Chisti
    • 2
  1. 1.Department of Chemical EngineeringUniversity of AlmeríaAlmeríaSpain
  2. 2. Institute of Technology and EngineeringMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations