Bioprocess and Biosystems Engineering

, Volume 28, Issue 2, pp 109–119 | Cite as

Methods and milliliter scale devices for high-throughput bioprocess design

  • Dirk Weuster-Botz
  • Robert Puskeiler
  • Andreas Kusterer
  • Klaus Kaufmann
  • Gernot T. John
  • Matthias Arnold
Original paper

Abstract

Based on electromagnetic simulations as well as on computational fluid dynamics simulations gas-inducing impellers and their magnetic inductive drive were optimized for stirred-tank reactors on a 10 ml-scale arranged in a bioreaction block with 48 bioreactors. High impeller speeds of up to 4,000 rpm were achieved at very small electrical power inputs (63 W with 48 bioreactors). The maxima of local energy dissipation in the reaction medium were estimated to be up to 50 W L−1 at 2,800 rpm. Total power input and local energy dissipation are thus well comparable to standard stirred-tank bioreactors. A prototype fluorescence reader for 8 bioreactors with immobilized fluorometric sensor spots was applied for online measurement of dissolved oxygen concentration making use of the phase detection method. A self-optimizing scheduling software was developed for parallel control of 48 bioreactors with a liquid-handling system for automation of titration and sampling. It was shown on the examples of simple parallel batch cultivations of Escherichia coli with different media compositions that high cell densities of up to 16.5 g L−1 dry cell mass can be achieved without pH-control within 5 h with a high parallel reproducibility (standard deviation<3.5%, n=48) due to the high oxygen transfer capability of the gas-inducing stirred-tank bioreactors.

Keywords

Microorganisms Bioprocess development Parallel stirred-tank bioreactors Automation Escherichia coli 

References

  1. 1.
    Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opinion Biotechnol 13:1–7CrossRefGoogle Scholar
  2. 2.
    Weuster-Botz D (2005) Parallel reactor systems for bioprocess development. In: Scheper T, Kragl U (eds) Technology transfer in biotechnology—from lab to industry to production. Adv Biochem Eng / Biotechnol 92. Springer, Berlin Heidelberg New York, pp 125–144Google Scholar
  3. 3.
    Hermann R, Lehmann M, Büchs J (2003) Characterization of gas-liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng 81:178–186CrossRefPubMedGoogle Scholar
  4. 4.
    John GT, Klimant I, Wittmann C, Heinzle E (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol Bioeng 81(7):829–836CrossRefPubMedGoogle Scholar
  5. 5.
    Elmahdi I, Baganz F, Dixon K, Harrop T, Sugden D, Lye GJ (2003) pH control in microwell fermentations of S. erythraea CA340: influence on biomass growth kinetics and erythromycin biosynthesis. Biochem Eng J 16:299–310CrossRefGoogle Scholar
  6. 6.
    Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194CrossRefGoogle Scholar
  7. 7.
    Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas-liquid mass transfer in shake flasks. Biochem Eng J 17:155–167CrossRefGoogle Scholar
  8. 8.
    Altenbach-Rehm J, Nell C, Arnold M, Weuster-Botz D (1999) Parallel bubble columns with fed-batch technique for microbial proces development on a small scale. Chem Eng Technol 22:1051–1058CrossRefGoogle Scholar
  9. 9.
    Weuster-Botz D, Altenbach-Rehm J, Arnold M (2001) Parallel substrate feeding and pH-control in shaking-flasks. Biochem Eng J 7(2):163–170CrossRefPubMedGoogle Scholar
  10. 10.
    Weuster-Botz D, Stevens S, Hawrylenko A (2002) Parallel-operated stirred-columns for microbial process development. Biochem Eng J 11:69–72CrossRefGoogle Scholar
  11. 11.
    Lamping SR, Zhang H, Allen B, Shamlou PA (2003) Design of a prototype miniature bioreactor for high throughput automated bioprocessing. Chem Eng Sci 58(3–6):747–758CrossRefGoogle Scholar
  12. 12.
    Maharbiz MM, Holtz WJ, Howe RT, Keasling JD (2004) Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol Bioeng 85:376–381CrossRefPubMedGoogle Scholar
  13. 13.
    Weiss S, John GT, Klimant I, Heinzle E (2002) Modeling of mixing in 96-well microplates observed with fluorescence indicators. Biotechnol Progr 18(4):821–830CrossRefGoogle Scholar
  14. 14.
    Doig S, Diep A, Baganz F (2005) Characterisation of a novel miniaturised bubble column bioreactor for high throughput cell cultivation. Biochem Eng J 23:97–105CrossRefGoogle Scholar
  15. 15.
    Puskeiler R, Zacher KH, Weuster-Botz D (2003) Device and method for parallel, automated cultivation of cells in technical conditions. European patent application. PCT/EP2003/014752Google Scholar
  16. 16.
    Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523CrossRefPubMedGoogle Scholar
  17. 17.
    Puskeiler R, Kusterer A, John GT, Weuster-Botz D (2005) Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol Appl Biochem. DOI 10.1042/BA20040197Google Scholar
  18. 18.
    Holst G, Glud RN, Kühl M, Klimant I (1997): A microoptode array for fine-scale measurement of oxygen distribution. Sensors Actuat B 38(39):122–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Dirk Weuster-Botz
    • 1
  • Robert Puskeiler
    • 1
  • Andreas Kusterer
    • 1
  • Klaus Kaufmann
    • 2
  • Gernot T. John
    • 3
  • Matthias Arnold
    • 4
  1. 1.Lehrstuhl für BioverfahrenstechnikTechnische Universität MünchenGarchingGermany
  2. 2.H+P-Labortechnik AGOberschleißheimGermany
  3. 3.Precision Sensing GmbHRegensburgGermany
  4. 4.DASGIP AGJülichGermany

Personalised recommendations