Bioprocess and Biosystems Engineering

, Volume 28, Issue 4, pp 217–225 | Cite as

Modeling and observer design for recombinant Escherichia coli strain

  • M. Nadri
  • I. Trezzani
  • H. Hammouri
  • P. Dhurjati
  • R. Longin
  • J. Lieto
Original paper


A mathematical model for recombinant bacteria which includes foreign protein production is developed. The experimental system consists of an Escherichia Coli strain and plasmid pIT34 containing genes for bioluminescence and production of a protein, β-galactosidase. This recombinant strain is constructed to facilitate on-line estimation and control in a complex bioprocess. Several batch experiments are designed and performed to validate the developed model. The design of a model structure, the identification of the model parameters and the estimation problem are three parts of a joint design problem. A nonlinear observer is designed and an experimental evaluation is performed on a batch fermentation process to estimate the substrate consumption.


Modeling Constant high-gain observer Recombinant bacteria Induction 

List of symbols


Biomass concentration (g/l)


Substrate concentration (g/l)


Protein concentration in the reactor (g/l)


Protein concentration in the cell (g/cell)


Light intensity (V)


Inducer concentration (g/l)


Oxygen concentration (g/l)


Specific growth reaction rate (1/h)


Biosynthesis reaction rate (1/h)


Yield coefficient (g/g)


Cell mass in moles (g/mole)


Death kinetics (l/h)


Inducer effect


Oxygen limitation


Inducer degradation effect (1/h)


Maintenance constant associate to the substrate (1/h)


Maintenance constant associated to the oxygen (1/h)


Saturation constant associated to the oxygen (g/l)


Saturation constant associated to the substrate (g/l)


Oxygen saturation constant (1/h)


Substrate concentration in the input stream (g/l)


Dilution rate (1/h)


  1. 1.
    Bastin G, Dochain D (1990) On-line estimation and adaptive control for bioreactors. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Bornard G, Hammouri H (1991) A high gain observer for a class of uniformly observable systems. In: Proceedings of 30th IEEE conference on decision and control, Brighton England, 122:1494–1496Google Scholar
  3. 3.
    Busawon K, Farza M, Hammouri H (1998) Observer design for a special class of nonlinear systems. Int J Control 71:405–418CrossRefGoogle Scholar
  4. 4.
    Cha HJ, Wu CF, Valdes JJ, Rao G, Bentley WE (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotech Bioeng 67:565–574CrossRefGoogle Scholar
  5. 5.
    DeLisa MP, Li J, Rao G, Wiegand WA, Bentley WE (1999) Monitoring GFP-Operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotech Bioeng 65:54-64CrossRefGoogle Scholar
  6. 6.
    Deza F, Busvelle E, Gauthier JP, Rakotopara D (1992) High gain estimation for nonlinear systems. Syst Control Lett 18:295–299CrossRefGoogle Scholar
  7. 7.
    Dochain D, Perrier M, Ydstie BE (1992) Asymptotic observers for stirred tank reactors. Chem Eng Sci 47:4167–4177CrossRefGoogle Scholar
  8. 8.
    Farza M, Nadri M, Hammouri H (2000) Nonlinear observation of specific growth rate in aerobic fermentation processes. Bioproc Eng 23:359–366CrossRefGoogle Scholar
  9. 9.
    Gaillon L, Longin R, Luu TD (1997) Appareil et procédé de mesure de propriétés optiques par contrôle rétroactif. French patent application no. 9714864 filed on 26 November, and foreign counterparts (WO 99/27349)Google Scholar
  10. 10.
    Gauthier JP, Hammouri H, Othman S (1992) A simple observer for nonlinear systems-application to bioreactors. IEEE Trans Aut Control 37:875–880CrossRefGoogle Scholar
  11. 11.
    Hammouri H, Targui B, Armanet F (2002) High gain observer based on a triangular structue. Int J Robust Nonlinear Control 12(6):497–518CrossRefGoogle Scholar
  12. 12.
    Lee J, Ramirez F (1992) Mathematical modeling of induced foreign protein production by recombinant bacteria. Biotech Bioeng 29:635–646CrossRefGoogle Scholar
  13. 13.
    Konstantinov KB, Dhurjati P (1993) Real-time compensation of the inner filter effect in high-density bioluminescent cultures. Biotech Bioeng 42:1190–1198CrossRefGoogle Scholar
  14. 14.
    Shimizu H, Takamatsu T, Shioya S, Suga KI (1989) An Algorithmic approach to constructing the on-line estimation system for the specific growth rate. Biotechnol Bioeng 33:354–364CrossRefGoogle Scholar
  15. 15.
    Trezzani I (2001) Conduite et optimisation de processus de fermentation: quantification en ligne de la synthèse de protéines recombinantes par mesure de bioluminescence. PH D ThesisGoogle Scholar
  16. 16.
    Trezzani I, Nadri M, Hammouri H, Lieto J, Dorel C, Lejeune P, Dhurjati P, Bellalou J, Longin R (2001) Quantification en ligne de la synthèse de molécules recombinantes par mesure de bioluminescence. Récents Progrés en Génie des Procédés, Nancy 15(87):147–155Google Scholar
  17. 17.
    Zhang Z, Scharer JM, Moo-Young M (1997) Mathematical model for aerobic culture of recombinant yeast. Bioproc Eng 17:235–240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Nadri
    • 1
  • I. Trezzani
    • 3
  • H. Hammouri
    • 1
  • P. Dhurjati
    • 2
  • R. Longin
    • 3
  • J. Lieto
    • 1
  1. 1.L.A.G.E.P., UMR CNRS 5007Université Claude Bernard Lyon IVilleurbanne cedexFrance
  2. 2.Department of Chemical EngineeringUniversity of DelawareNewarkUSA
  3. 3.Plateau technique 5Génomique StructuraleParis Cedex 15France

Personalised recommendations