Bioprocess and Biosystems Engineering

, Volume 26, Issue 6, pp 347–351

Recent developments in the monitoring, modeling and control of biological production systems

Original Paper


Current trends in the development of methods for monitoring, modeling and controlling biological production systems are reviewed from a bioengineering perspective. The ability to measure intracellular conditions in bioprocesses using genomics and other bioinformatics tools is addressed. Devices provided via micromachining techniques and new real-time optical technology are other novel methods that may facilitate biosystem engineering. Mathematical modeling of data obtained from bioinformatics or real-time monitoring methods are necessary in order to handle the dense flows of data that are generated. Furthermore, control methods must be able to cope with these data flows in efficient ways that can be implemented in plant-wide computer communication systems.


Genomics and proteomics Chemometrics Multivariate process control In situ optical sensors Miniaturized devices Control models 


  1. 1.
    Schügerl K (1997) Bioreaction engineering, bioprocess monitoring, vol 3. Wiley, Chichester, UKGoogle Scholar
  2. 2.
    Sonnleitner B (1999) Instrumentation of biotechnological processes. Adv Biochem Eng Biot 66:1–64Google Scholar
  3. 3.
    Bracewell DG, Brown RA, Hoare M (2004) Addressing a whole bioprocess in real-time using an optical biosensor-formation, recovery and purification of antibody fragments from a recombinant E. coli host. Bioproc Biosys Eng 26:271–282Google Scholar
  4. 4.
    Cserjan-Puschmann M, Grabherr R, Striedner G, Clementschitsch F, Bayer K (2002) Optimizing recombinant microbial fermentation processes: an integrated approach. BioPharm Mag, July 15Google Scholar
  5. 5.
    Gill RT, Valdes JJ, Bentley WE (2000) A comparative study on global stress regulation in response to overexpression of recombinant proteins in E. coli. Metab Eng 2:178–189CrossRefPubMedGoogle Scholar
  6. 6.
    Jürgen B, Hanschke R, Sarvas M, Hecker M, Schweder T (2001) Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biot 55:326–332CrossRefGoogle Scholar
  7. 7.
    DeLisa M, Valdes JJ, Bentley WE (2001) Quorum sensing via AI-2 communicates the metabolic burden associated with heterologeous protein production. Biotechnol Bioeng 75:439–450CrossRefPubMedGoogle Scholar
  8. 8.
    Uhlig A, Lindner E, Teutloff C, Schnakenberg U, Hintsche R (1997) Miniaturized ion-selective chip electrode for sensor application. Anal Chem 69:4032–4038CrossRefPubMedGoogle Scholar
  9. 9.
    Gabig-Ciminska M, Holmgren A, Andresen H, Barken KB, Wümpelmann M, Albers J, Hintsche R, Breitenstein A, Neubauer P, Los M, Czyz A, Wegrzyn G, Silfversparre G, Jürgen B, Schweder T, Enfors S-O (2004) Electric chips for rapid detection and quantification of nucleic acids. Biosens Bioelectron 19(6):537-46CrossRefPubMedGoogle Scholar
  10. 10.
    Berney H, West J, Alderman J, Lane WA, Collins JK (2000) A DNA diagnostic biosensor: development, characterisation and performance. Sensor Actuat B 68:100–108CrossRefGoogle Scholar
  11. 11.
    Hofmann M, Akkoyun A, Flynn R, Mathewson A, Berney H, Sheehan MM (2003) Development of PCR conditions in a silicon microreactor DNA amplification device. Int J Environ An Ch (in press)Google Scholar
  12. 12.
    Marose S, Lindemann C, Ulber R, Scheper T (1999) Optical sensor systems for bioprocess monitoring. Trends Biotechnol 17:30–34CrossRefGoogle Scholar
  13. 13.
    Haack MB, Eliasson A, Olsson L (2004) Online mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J Biotechnol (in press)Google Scholar
  14. 14.
    Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) In-situ microscopy online process monitoring of mammalian cell cultures. Cytotechnology 38:129–134CrossRefGoogle Scholar
  15. 15.
    Kell D, Todd RW (1998) Dielectric estimation of microbial biomass using the Aber Instruments Biomass Monitor. Trends Biotechnol 16:149–150CrossRefGoogle Scholar
  16. 16.
    Rhiel M, Boese M (2002) Bioprocess-Informationen mittels FTIR Spectroskopie. Bioforum 25:824–825Google Scholar
  17. 17.
    Cimander C, Mandenius CF (2002) Online monitoring of a bioprocess based on the use of a multi-analyzer system with multivariate statistical process modelling. J Chem Technol Biotechnol 77:1157–1168CrossRefGoogle Scholar
  18. 18.
    Al-Rubeai M (1998) Monitoring of growth and productivity of animal cells by flow cytometry. In: Jenkin S (ed) Mammalian cell biotechnology. Humana Press, Totowa, NJGoogle Scholar
  19. 19.
    Ishaque A, Al-Rubeai M (1998) Monitoring apoptosis in hybridoma cell culture by flow cytometry. J Immunol Methods 221:43–57CrossRefPubMedGoogle Scholar
  20. 20.
    Valentinotti S, Cannizzaro, Rhiel M, von Stockar U (2004) Control of yeast fed-batch process through regulation of extracellular ethanol concentration. Bioproc Biosyst Eng (DOI 10.1007/s00449-004-0384-y)Google Scholar
  21. 21.
    Bonne D, Bay Jørgensen S (2004) Data driven time series modelling of batch processes. Automatica (accepted)Google Scholar
  22. 22.
    Gregersen L (2003) Monitoring and fault diagnosis of fermentation processes. PhD thesis, Denmark Technical University, Lyngby, DenmarkGoogle Scholar
  23. 23.
    Carvalho CCR (2003) Principal component analysis as a tool to summarise biotransformation data, influence on cell of solvent type and phase ratio. Biocatal Biotransfor 21(6):305–314CrossRefGoogle Scholar
  24. 24.
    Stärk E, Hitzmann B, Schürgerl K, Scheper T, Fuchs T, Köster D, Märkl H (2002) In situ fluorescence probes, a useful tool for non-invasive bioprocess monitoring. Adv Biochem Eng Biot 74:22–38Google Scholar
  25. 25.
    McGovern AC, Ernill R, Kara BV, Kell DB, Goodacre R (1999) Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to α2-interferon production. J Biotechnol 72:157–168CrossRefPubMedGoogle Scholar
  26. 26.
    Hodgson BJ, Taylor CN, Ushio M, Leigh JR, Kalaganova T, Baganz F (2004) Intelligent modeling of bioprocesses: a comparison of structured and unstructured approaches. Bioproc Biosyst Eng (DOI 10.1007/s00449-004-0382-0)Google Scholar
  27. 27.
    Csögör Z, Herrenbauer M, Perner I, Schmidt K, Posten C (1999) Design of a photo-bioreactor for modelling purposes. Chem Eng Proc 38:517–523CrossRefGoogle Scholar
  28. 28.
    Meier J, Haskell S, Johnson A, Vasey M, Kay M, Taticek R (2002) Development and implementation of a program for monitoring, analysis, and flexible process control in a cell culture and fermentation pilot plant. In: Proc Int Conf Trends in Monitoring and Control of Life Science Applications, Lyngby, Denmark, 7–8 October 2002Google Scholar
  29. 29.
    Cimander C, Bachinger T, Mandenius CF (2003) Integration of distributed multi-analyzer monitoring and control in bioprocessing based on a real-time expert system. J Biotechnol 103:237–248CrossRefPubMedGoogle Scholar
  30. 30.
    Cimander C, Mandenius CF (2004) Bioprocess control from a multivariate process trajectory. Bioprocess Biosyst Eng (DOI: 10.1007/s00449-003-0327-z)Google Scholar
  31. 31.
    Lübbert A (2004) Hybrid modelling systems for process supervision and control of a bioprocess. Bioproc Biosyst Eng (accepted)Google Scholar
  32. 32.
    Feng M, Glassey J (2000) Physiological state specific models in estimation of recombinant Escherichia coli fermentation performance. Biotechnol Bioeng 69:494–593CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Division of BiotechnologyLinköping UniversityLinköpingSweden

Personalised recommendations