Bioprocess and Biosystems Engineering

, Volume 26, Issue 5, pp 315–323 | Cite as

Agitation effects on submerged growth and product formation of Aspergillus niger

  • Sven Kelly
  • Luis H. Grimm
  • Jan Hengstler
  • Ellen Schultheis
  • Rainer Krull
  • Dietmar C. Hempel
Original Paper


Product formation of mycelial organisms, like Aspergillus niger, is intimately connected with their morphology. Pellet morphology is often requested for product formation. Therefore, it is important to reveal the influence of the hydrodynamic conditions on the morphological development. In the present study, pellet morphology and glucoamylase formation were studied under different agitation intensities of A. niger AB1.13. For pellet formation inside the bioreactor, without the use of precultures, it is necessary to work at low energy dissipation rates. Biomass growth and glucoamylase activity were correlated with energy dissipation. Furthermore, product yield was analysed in dependence of pellet size and concentration. The present work shows that simple equations based on Monod-kinetics can describe growth and product formation, in general, also in mycelian organisms. All measured morphological data, like pellet concentration, as well as glucoamylase formation, strongly depend on the hydrodynamic conditions.


Aspergillus niger Morphology Glucoamylase production Shear stress Pellet formation 



Growth-associated product formation coefficient (μKat g−1)


Non-growth-associated product formation coefficient (μKat g−1h−1)


Energy dissipation (W kg−1)


Specific growth rate (h−1)


Maximum specific growth rate (h−1)


Density of wet pellet (kg m−3)


Glucoamylase enzyme activity in the bulk phase (μKat l−1)


Glucose concentration (g l−1)

\( C_{{{\text{O}}_{2} }} \)

Oxygen concentration (bulk) (g l−1)

\( C^{ * }_{{{\text{O}}_{2} }} \)

Saturation concentration of oxygen (bulk) (g l−1)


Pellet concentration (l−1)


Pellet diameter (mm)


Saturation coefficient glucose (g l−1)

\( K_{{{\text{O}}_{2} }} \)

Saturation coefficient oxygen (g l−1)


Volumetric gas liquid mass transfer coefficient (h−1)


Glucoamylase production rate (μKat l−1h−1)


Glucose consumption rate (g l−1h−1)

\( R_{{{\text{O}}_{2} }} \)

Oxygen consumption rate (g l−1h−1)


Biomass growth rate (g l−1h−1)


Biomass concentration (g l−1)


Yield coefficient of biomass on oxygen (g g−1)


Yield coefficient of biomass on glucose (g g−1)



The authors acknowledge financial support provided by the German Research Foundation. This project is part of the SFB 578 “Development of biotechnological processes by integrating genetic and engineering methods—from gene to product”.


  1. 1.
    Amanullah A, Jüsten P, Davies A, Paul GC, Nienow AW, Thomas CR (2000) Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. Biochem Eng J 5:109–114CrossRefPubMedGoogle Scholar
  2. 2.
    Amanullah A, Leonildi E, Nienow AW, Thomas CR (2001) Dynamics of mycelia aggregation in cultures of Aspergillus oryzae. Bioproc Biosyst Eng 24:101–107CrossRefGoogle Scholar
  3. 3.
    Bhargava S, Wenger K, Marten M (2003) Pulsed addition of limiting-carbon during Aspergillus oryzae fermentation leads to improved productivity of a recombinant enzyme. Biotechnol Bioeng 85(1):111–117CrossRefGoogle Scholar
  4. 4.
    Braun S, Vecht-Lifshitz SE (1991) Mycelial morphology and metabolite production. Trends Biotechnol 9:63–68Google Scholar
  5. 5.
    Cox PW, Thomas CR (1992) Classification and measurement of fungal pellets by automated image analysis. Biotechnol Bioeng 39:945–952Google Scholar
  6. 6.
    Cui YQ, van der Lans RGJM, Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol Bioeng 55(5):715–726CrossRefGoogle Scholar
  7. 7.
    Cui YQ, van der Lans RGJM, Giuseppin MLF, Luyben KCAM (1998) Influence of fermentation conditions and scale on the submerged fermentation of Aspergillus awamori. Enz Micro Tech 23:157–167CrossRefGoogle Scholar
  8. 8.
    Cui YQ, van der Lans RGJM, Luyben KCAM (1998) Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol Bioeng 57(4):409–419CrossRefPubMedGoogle Scholar
  9. 9.
    Cui YQ, Okkerse WJ, van der Lans RGJM, Luyben KCAM (1998) Modeling and measurements of fungal growth and morphology in submerged fermentations. Biotechnol Bioeng 60(2):216–229CrossRefPubMedGoogle Scholar
  10. 10.
    Davies JL, Baganz F, Ison AP, Lye GJ (2000) Studies on the interaction of fermentation and microfiltration operations: erythromycin recovery from Saccharopolyspora erythraea fermentation broths. Bioproc Eng 69(4):429–439CrossRefGoogle Scholar
  11. 11.
    Dynesen J, Nielsen J (2003) Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnol Prog 19(3):1049–1052CrossRefPubMedGoogle Scholar
  12. 12.
    El-Enshasy HA (1998) Optimization of glucose oxidase production and excretion by recombinant Aspergillus niger. Technische Universität Carolo-Wilhelmina, BraunschweigGoogle Scholar
  13. 13.
    El-Enshasy HA, Hellmuth K, Rinas U (1999) Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger. Appl Biochem Biotechnol 81(1):1–11CrossRefPubMedGoogle Scholar
  14. 14.
    Fujita M, Iwahori KST, Yamakawa K (1994) Analysis of pellet formation of Aspergillus niger based on shear-stress. J Ferment Bioeng 78(5):368–373CrossRefGoogle Scholar
  15. 15.
    Ganzlin M (2000) Untersuchungen der induzierten Proteinproduktion unter Kontrolle des Glucoamylasepromotors in Aspergillus niger. Technische Universität Carolo-Wilhelmina, BraunschweigGoogle Scholar
  16. 16.
    Grimm LH, Kelly S, Hengstler J, Göbel A, Krull R, Hempel DC (2003) Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 87(2):213–218CrossRefGoogle Scholar
  17. 17.
    Hellendoorn L, Mulder H, van den Heuvel JC, Ottengraf SPP (1998) Intrinsic kinetic parameters of the pellet forming fungus Aspergillus awamori. Biotechnol Bioeng 58(5):478–485CrossRefPubMedGoogle Scholar
  18. 18.
    Johansen CL, Coolen L, Hunik JH (1998) Influence of morphology on product formation in Aspergillus awamori during submerged fermentations. Biotechnol Prog 14:233–240CrossRefPubMedGoogle Scholar
  19. 19.
    Koutinas AA, Wang R, Webb C (2003) Estimation of fungal growth in complex, heterogeneous culture. Biochem Eng J 14:93–100CrossRefGoogle Scholar
  20. 20.
    Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70(3):300–312CrossRefPubMedGoogle Scholar
  21. 21.
    Liu F, Li W, Ridgway D, Gu T, Moo-Young M (1998) Inhibition of extracellular protease secretion by Aspergillus niger using cell immobilization. Biotechnol Lett 20(6):539–542CrossRefGoogle Scholar
  22. 22.
    Liu J-Z, Weng L-P, Zhang Q-L, Xu H, Ji L-N (2003) A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem Eng J 14:137–141CrossRefGoogle Scholar
  23. 23.
    Mahnke EU (2001) Fluiddynamisch induzierte Partikelbeanspruchung in pneumatisch gerührten Mehrphasenreaktoren. In: Hempel DC (ed) ibvt-Schriftenreihe, vol 12. FIT-Verlag: Paderborn as well as PhD thesis, Technische Universität Carolo-Wilhelmina zu BraunschweigGoogle Scholar
  24. 24.
    Mattern IE, van Noort JM, van den Berg P, Archer DB, Roberts IN, van den Hondel CAMJJ (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genomics 234:332–336Google Scholar
  25. 25.
    Metz B, Kossen NWF (1977) The growth of molds in the form of pellets—a literature review. Biotechnol Bioeng 14:781–799Google Scholar
  26. 26.
    Mitard A, Riba JP (1988) Morphology and growth of Aspergillus niger ATCC 26036 cultivated at several shear rates. Biotechnol Bioeng 32:835–840Google Scholar
  27. 27.
    Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11(1):93–98PubMedGoogle Scholar
  28. 28.
    Papagianni M, Mattey M, Kristiansen B (1998) Citric acid production and morphology of Aspergillus niger as functions of the mixing intensity in a stirred tank and a tubular loop bioreactor. Biochem Eng J 2:197–205CrossRefGoogle Scholar
  29. 29.
    Paul GC, Priede MA, Thomas CR (1999) Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations. Biochem Eng J 3:121–129CrossRefGoogle Scholar
  30. 30.
    Punt PJ, van Biezen N, Conesa A, Albers AJM, van den Hondel CAMJJ (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200–206CrossRefPubMedGoogle Scholar
  31. 31.
    Sauer T (1986) Einfluß inerter Partikel auf die Hydrodynamik und den volumetrischen Stoffübergangskoeffizienten in einer Suspensions-Blasensäule, Uni-GH PaderbornGoogle Scholar
  32. 32.
    Withers JM, Swift RJ, Wiebe MG, Robson GD, Punt PJ, van den Hondel CAMJJ, Trinci APJ (1998) Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture. Biotechnol Bioeng 59(4):407–418CrossRefPubMedGoogle Scholar
  33. 33.
    Wongwicharn A, Harvey LM, McNeil B (1999) Secretion of heterologous and native proteins, growth and morphology in batch cultures of Aspergillus niger B1-D at varying agitation rates. J Chem Technol Biotechnol 74:821–828CrossRefGoogle Scholar
  34. 34.
    Zetelaki K, Vas K (1968) The role of aeration and agitation in the production of glucose oxidase in submerged culture. Biotechnol Bioeng 10:45–59Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Sven Kelly
    • 1
  • Luis H. Grimm
    • 1
  • Jan Hengstler
    • 1
  • Ellen Schultheis
    • 1
  • Rainer Krull
    • 1
  • Dietmar C. Hempel
    • 1
  1. 1.Institute of Biochemical EngineeringTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations