Bioprocess and Biosystems Engineering

, Volume 26, Issue 1, pp 1–10 | Cite as

Improvement of a mammalian cell culture process by adaptive, model-based dialysis fed-batch cultivation and suppression of apoptosis

Original Paper

Abstract

Both conventional and genetic engineering techniques can significantly improve the performance of animal cell cultures for the large-scale production of pharmaceutical products. In this paper, the effect of such techniques on cell yield and antibody production of two NS0 cell lines is presented. On the one hand, the effect of fed-batch cultivation using dialysis is compared to cultivation without dialysis. Maximum cell density could be increased by a factor of ~5–7 by dialysis fed-batch cultivation. On the other hand, suppression of apoptosis in the NS0 cell line 6A1 bcl-2 resulted in a prolonged growth phase and a higher viability and maximum cell density in fed-batch cultivation in contrast to the control cell line 6A1 (100)3. These factors resulted in more product formation (by a factor ~2). Finally, the adaptive model-based OLFO controller, developed as a general tool for cell culture fed-batch processes, was able to control the fed-batch and dialysis fed-batch cultivations of both cell lines.

Keywords

Process control Fed-batch Apoptosis bcl-2 overexpression NS0 cells 

Abbreviations

A

membrane area (dm2)

cGlc,F

glucose concentration in nutrient feed (mmol L−1)

cGlc,FD

glucose concentration in dialysis feed (mmol L−1)

cGlc,i

glucose concentration in inner reactor chamber (mmol L−1)

cGlc,o

glucose concentration in outer reactor chamber (dialysis chamber) (mmol L−1)

cLac,FD

lactate concentration in dialysis feed (mmol L−1)

cLac,i

lactate concentration in inner reactor chamber (mmol L−1)

cLac,o

lactate concentration in outer reactor chamber (dialysis chamber) (mmol L−1)

cLS,FD

limiting substrate concentration in dialysis feed (mmol L−1)

cLS,i

limiting substrate concentration in inner reactor chamber (mmol L−1)

cLS,o

limiting substrate concentration in outer reactor chamber (dialysis chamber) (mmol L−1)

cMab

monoclonal antibody concentration (mg L−1)

FD

feed rate of dialysis feed (L h−1)

FGlc

feed rate of nutrient concentrate feed (L h−1)

Kd

maximum death constant (h−1)

kd,LS

death rate constant for limiting substrate (mmol L−1)

kGlc

monod kinetic constant for glucose uptake (mmol L−1)

kLac

monod kinetic constant for lactate uptake (mmol L−1)

kLS

monod kinetic constant for limiting substrate uptake (mmol L−1)

KLys

cell lysis constant (h−1)

KS,Glc

monod kinetic constant for glucose (mmol L−1)

KS,LS

monod kinetic constant for limiting substrate (mmol L−1)

µ

cell-specific growth rate (h−1)

µ d

cell-specific death rate (h−1)

µ d,min

minimum cell-specific death rate (h−1)

µ max

maximum cell-specific growth rate (h−1)

PGlc

membrane permeation coefficient for glucose (dm h−1)

PLac

membrane permeation coefficient for lactate (dm h−1)

PLS

membrane permeation coefficient for limiting substrate (dm h−1)

qGlc

cell-specific glucose uptake rate (mmol cell−1 h−1)

qGlc,max

maximum cell-specific glucose uptake rate (mmol cell−1 h−1)

qLac

cell-specific lactate uptake/production rate (mmol cell−1 h−1)

qLac,max

maximum cell-specific lactate uptake rate (mmol cell−1 h−1)

qLS

cell-specific limiting substrate uptake rate (mmol cell−1 h−1)

qLS,max

maximum cell-specific limiting substrate uptake rate (mmol cell −1 h−1)

qMab

cell-specific antibody production rate (mg cell−1 h−1)

qMAb,max

maximum cell-specific antibody production rate (mg cell−1 h−1)

t

time (h)

Vi

volume of inner reactor chamber (culture chamber) (L)

Vo

volume of outer reactor chamber (dialysis chamber) (L)

Xt

total cell concentration (cells L−1)

X

viable cell concentration (cells L−1)

YLac/Glc

kinetic production constant (stoichiometric ratio of lactate production and glucose uptake) (−)

Notes

Acknowledgements

This project "Suppression of programmed cell death in industrial scale biological production systems", contract number QLK3-CT-2000-00076, is kindly financed by the European Union (framework V).

References

  1. 1.
    Glaser V (2001) Current trends and innovations in cell culture. Genet Eng News 21(11)Google Scholar
  2. 2.
    Frison A, Memmert K (2002) Fed-batch process for Mab production. Genet Eng News 22(11)Google Scholar
  3. 3.
    Wrotnowski C (2000) Cell culture now a drug discovery bottleneck. Genet Eng News 20(15)Google Scholar
  4. 4.
    Capiaumont J, Legrand C, Carbonell D, Dousset B, Belleville F, Nabet P (1995) Methods for reducing the ammonia in hybridoma cell cultures. J Biotechnol 39:49–58CrossRefPubMedGoogle Scholar
  5. 5.
    De Tremblay M, Perrier M, Chavarie C, Archambault J (1993) Fed-batch culture of hybridoma cells: comparison of optimal control approach and closed loop strategies. Bioprocess Eng 9:13–21Google Scholar
  6. 6.
    Jang JD, Barford JP (2000) Effect of feed rate on growth rate and antibody production in the fed-batch culture of murine hybridoma cells. Cytotechnology 32:229–242CrossRefGoogle Scholar
  7. 7.
    Jeong YH, Wang SS (1995) Role of glutamine in hybridoma cell culture: effects on cell growth antibody production and cell metabolism. Enzyme Microbiol Technol 17:47–55CrossRefGoogle Scholar
  8. 8.
    Kurokawa H, Park YS, Iijima S, Kobayashi T (1994) Growth characteristics in fed-batch culture of hybridoma cells with control of glucose and glutamine concentrations. Biotechnol Bioeng 44:95–103Google Scholar
  9. 9.
    Ljunggren J, Häggström L (1994) Catabolic control of hybridoma cells by glucose and glutamine limited fed batch cultures. Biotechnol Bioeng 44:808–818Google Scholar
  10. 10.
    Miller WM, Blanch HW (1991) Regulation of animal cell metabolism in bioreactors. In: Ho, C (ed) Animal Cell Bioreactors, Series 17, pp 119–161Google Scholar
  11. 11.
    Zhou W, Chen CC, Buckland B, Aunins J (1997) Fed-batch culture of recombinant NS0 myeloma cells with high monoclonal antibody production. Biotechnol Bioeng 55:783–792CrossRefGoogle Scholar
  12. 12.
    Roubos JA, de Gooijer CD, van Straten G, van Boxtel AJB (1997) Comparison of optimisation methods for fed-batch cultures of hybridoma cells. Bioprocess Eng 17:99–102CrossRefGoogle Scholar
  13. 13.
    Sanfeliu A, Cairo JJ, Casas C, Sola C, Godia F (1996) Analysis of nutritional factors and physical conditions affecting growth and monoclonal antibody production of the hybridoma KB-265 cell line. Biotechnol Progr 12:209–216CrossRefGoogle Scholar
  14. 14.
    Xie L, Wang DIC (1996) High cell density and high monoclonal antibody production through medium design and rational control in a bioreactor. Biotechnol Bioeng 51:725–729CrossRefGoogle Scholar
  15. 15.
    Xie L, Wang DIC (1994) Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnol Bioeng 43:1175–1189Google Scholar
  16. 16.
    Chen Y, Cino J (2000) Nutrient-feed control in fed-batch fermenting. Genet Eng News 20(15)Google Scholar
  17. 17.
    Simons S (2001) Software packages for control of bioprocesses. Genet Eng News 21(15)Google Scholar
  18. 18.
    DiStefano DJ, Mark GE, Robinson DK (1996) Feeding of nutrients delays apoptotic death in fed-batch cultures of recombinant NS0 myeloma cells. Biotechnol Lett 18:1067–1072Google Scholar
  19. 19.
    Pörtner R, Märkl H (1998) Dialysis cultures. Appl Microbiol Biotechnol 50:403–414PubMedGoogle Scholar
  20. 20.
    Ogbonna JB, Märkl H (1993) Nutrient-split feeding strategy for dialysis cultivation of Escherichia coli. Biotechnol Bioeng 41:1092–1100Google Scholar
  21. 21.
    Dhir S, Morrow KJ Jr, Rhinehart RR, Wiesner T (2000) Dynamic optimization of hybridoma growth in a fed-batch bioreactor. Biotechnol Bioeng 67:197–205CrossRefPubMedGoogle Scholar
  22. 22.
    Guardia MJ, Gambhir A, Europa AF, Ramkrishna D, Hu WS (2000) Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells. Biotechnol Progr 16:847–853CrossRefGoogle Scholar
  23. 23.
    Frahm B, Lane P, Atzert H, Munack A, Hoffmann M, Hass V, Pörtner R (2002) Adaptive model-based control by the open-loop-feedback-optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells. Biotechnol Progr 18:1095–1103CrossRefGoogle Scholar
  24. 24.
    Bailey JE (1998) Mathematical modeling and analysis in biochemical engineering: Past accomplishments and future opportunities. Biotechnol Progr 14:8–20CrossRefGoogle Scholar
  25. 25.
    Sanderson CS, Phillips PJ, Barford JP (1996) Structured modeling of animal cells. Cytotechnology 21:149–153Google Scholar
  26. 26.
    Tziampazis E, Sambanis A (1994) Modeling cell culture processes. Cytotechnology 14:191–294PubMedGoogle Scholar
  27. 27.
    Dreyfuss SE (1962) Some types of optimal control of stochastic systems. SIAM J Control 2:120–134Google Scholar
  28. 28.
    Luttmann R, Munack A, Thoma M (1985) Mathematical modelling parameter identification and adaptive control of single-cell protein processes in tower-loop bioreactors. Adv Biochem Eng/Biotechnol 32:195–205Google Scholar
  29. 29.
    Garcia CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—A survey. Automatica 25:335–348CrossRefGoogle Scholar
  30. 30.
    Helmreich EJM (2001) The biochemistry of cell signalling, Oxford University Press, Oxford, ISBN 0198508204Google Scholar
  31. 31.
    Fussenegger M, Bailey JE (1998) Molecular regulation of cell-cycle progression and apoptosis in mammalian cells: implications for biotechnology. Biotechnol Progr 14:807–833CrossRefGoogle Scholar
  32. 32.
    Fassnacht D, Rössing S, Ghaussy N, Pörtner R (1997) Influence of non-essential amino acids on apoptotic and necrotic death of mouse hybridoma cells in batch cultures. Biotechnol Lett 19:35–38CrossRefGoogle Scholar
  33. 33.
    Dutton G (2002) Apoptosis-based therapies. Genet Eng News 22(12)Google Scholar
  34. 34.
    Fassnacht D, Rössing S, Singh RP, Al-Rubeai M, Pörtner R (1999) Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology 30:95–105CrossRefGoogle Scholar
  35. 35.
    Bebbington CR, Renner G, Thomson S, King D, Abrams G, Yarrington GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology 10:169–175PubMedGoogle Scholar
  36. 36.
    Solis R, Perani A, Habit B, Stacey GN, Maugras M (1995) Hybridoma cell cultures continuously undergo apoptosis and reveal a novel 100 bp DNA fragment. J Biotechnol 38:117–127CrossRefPubMedGoogle Scholar
  37. 37.
    Pörtner R, Schilling A, Lüdemann I, Märkl H (1996) High density fed-batch cultures for hybridoma cells performed with the aid of a kinetic model. Bioproc Eng 15:117–124CrossRefGoogle Scholar
  38. 38.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Perani A, Kenworthy J, Alam I, Gilchrist G, Metcalfe HK, Birch JR, Racher A J (2001) Evaluation of an apoptosis-resistant GS-NS0 cell line in a "state-of-the-art" manufacturing process. In: Proc 2nd European Meeting on Cell Engineering, Costa Brava, Spain, 26–28 October, 2001Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Bioprozess- und BioverfahrenstechnikTechnische Universität Hamburg-HarburgHamburgGermany
  2. 2.Institut für Technologie und BiosystemtechnikBundesforschungsanstalt für LandwirtschaftBraunschweigGermany

Personalised recommendations