Distributed Computing

, Volume 32, Issue 1, pp 27–40 | Cite as

Distributed approximation of k-service assignment

  • Magnús M. Halldórsson
  • Sven KöhlerEmail author
  • Dror Rawitz


We consider the k-Service Assignment problem (\(k\)-SA). The input consists of a network that contains servers and clients. Associated with each client is a demand and a profit. In addition, each client c has a service requirement Open image in new window , where \(\kappa (c)\) is a positive integer. A client c is satisfied only if its demand is handled by exactly \(\kappa (c)\) neighboring servers. The objective is to maximize the total profit of satisfied clients, while obeying the given capacity limits of the servers. We focus here on the more challenging case of hard constraints, where no profit is granted for partially satisfied clients. This models, e.g., when a client wants, for reasons of fault tolerance, a file to be stored at \(\kappa (c)\) or more nearby servers. Other motivations from the literature include resource allocation in 4G cellular networks and machine scheduling on related machines with assignment restrictions. In the r-restricted version of \(k\)-SA, no client requires more than an r-fraction of the capacity of any adjacent server. We present a (centralized) polynomial-time Open image in new window -approximation algorithm for r-restricted \(k\)-SA. A variant of this algorithm achieves an approximation ratio of Open image in new window when given a resource augmentation factor of \(1+r\). We use the latter result to present a Open image in new window -approximation algorithm for \(k\)-SA. In the distributed setting, we present: (i) a Open image in new window -approximation algorithm for r-restricted \(k\)-SA, (ii) a Open image in new window -approximation algorithm that uses a resource augmentation factor of \(1+r\) for r-restricted \(k\)-SA, both for any constant \(\varepsilon >0\), and (iii) an Open image in new window -approximation algorithm for \(k\)-SA (in expectation). The three distributed algorithms run in \(O(k^2 \varepsilon ^{-2} \log ^3 n)\) synchronous rounds (with high probability). In particular, this yields the first distributed Open image in new window -approximation of \(1\)-SA.



We thank Boaz Patt-Shamir for helpful discussions.


  1. 1.
    Amzallag, D., Bar-Yehuda, R., Raz, D., Scalosub, G.: Cell selection in 4G cellular networks. IEEE Trans. Mobile Comput. 12(7), 1443–1455 (2013)CrossRefGoogle Scholar
  2. 2.
    Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. J. ACM 48(5), 1069–1090 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified framework for approximation algorithms. ACM Comput. Surv. 36(4), 422–463 (2004)CrossRefGoogle Scholar
  5. 5.
    Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Ann. Discret. Math. 25, 27–46 (1985)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput. 33(4), 837–851 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, R., Grebla, G.: Joint scheduling and fast cell selection in OFDMA wireless networks. IEEE/ACM Trans. Netw. 23(1), 114–125 (2015)CrossRefGoogle Scholar
  9. 9.
    Cohen, R., Katzir, L., Raz, D.: An efficient approximation for the generalized assignment problem. Inf. Process. Lett. 100(4), 162–166 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. Comb. Optim. 4(2), 171–186 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J., Rawitz, D.: Online set packing. SIAM J. Comput. 41(4), 728–746 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Erdös, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Hung. 17(1–2), 61–99 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: improving the factor of 1-1/e. In: 47th IEEE Annual Symposium on Foundations of Computer Science, pp. 667–676 (2006)Google Scholar
  14. 14.
    Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 611–620 (2006)Google Scholar
  15. 15.
    Frieze, A.M., Clarke, M.R.B.: Approximation algorithms for the \(m\)-dimensional \(0-1\) knapsack problem: worst-case and probabilistic analyses. Eur. J. Oper. Res. 15, 100–109 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gurewitz, O., Sandomirsky, Y., Scalosub, G.: Cellular multi-coverage with non-uniform rates. In: INFOCOM, pp. 1330–1338 (2014)Google Scholar
  17. 17.
    Halldórsson, M.M., Köhler, S., Patt-Shamir, B., Rawitz, D.: Distributed backup placement in networks. In: 27th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 274–283 (2015)Google Scholar
  18. 18.
    Hȧstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182(1), 105–142 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating \(k\)-set packing. Comput. Complex. 15(1), 20–39 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Magazine, M.J., Chern, M.S.: A note on approximation schemes for multidimensional knapsack problems. Math. Oper. Res. 9(2), 244–247 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Patt-Shamir, B., Rawitz, D., Scalosub, G.: Distributed approximation of cellular coverage. J. Parallel Distrib. Comput. 72(3), 402–408 (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  25. 25.
    Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rawitz, D., Voloshin, A.: Flexible cell selection in cellular networks. In: 12th International Symposium on Algorithms and Experiments for Wireless Sensor Networks. LNCS, vol. 10050, pp. 112–128 (2016)Google Scholar
  27. 27.
    Sahni, S.: Approximate algorithms for the 0/1 knapsack problem. J. ACM 22(1), 115–124 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math. Program. 62, 461–474 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM J. Comput. 29(2), 648–670 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wattenhofer, R.: Principles of distributed computing: maximal independent set. Accessed 27 Aug 2015

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland
  2. 2.Faculty of EngineeringUniversity of FreiburgFreiburg im BreisgauGermany
  3. 3.Faculty of EngineeringBar-Ilan UniversityRamat GanIsrael

Personalised recommendations