Advertisement

Distributed Computing

, Volume 31, Issue 3, pp 241–254 | Cite as

Sade: competitive MAC under adversarial SINR

  • Adrian Ogierman
  • Andrea Richa
  • Christian Scheideler
  • Stefan Schmid
  • Jin Zhang
Article

Abstract

This paper considers the problem of how to efficiently share a wireless medium which is subject to harsh external interference or even jamming. So far, this problem is understood only in simplistic single-hop or unit disk graph models. We in this paper initiate the study of MAC protocols for the SINR interference model (a.k.a. physical model). This paper makes two contributions. First, we introduce a new adversarial SINR model which captures a wide range of interference phenomena. Concretely, we consider a powerful, adaptive adversary which can jam nodes at arbitrary times and which is only limited by some energy budget. Our second contribution is a distributed MAC protocol called Sade which provably achieves a constant competitive throughput in this environment: we show that, with high probability, the protocol ensures that a constant fraction of the non-blocked time periods is used for successful transmissions.

Notes

Acknowledgements

The authors would like to thank Michael Meier from the University of Paderborn for his help with the evaluation of the protocol. This research is partly supported by the Danish Villum project ReNet.

References

  1. 1.
    Alistarh, D., Gilbert, S., Guerraoui, R., Milosevic, Z., Newport, C.: Securing your every bit: reliable broadcast in byzantine wireless networks. In: Proceedings Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 50–59 (2010)Google Scholar
  2. 2.
    Alnifie, G., Simon, R.: A multi-channel defense against jamming attacks in wireless sensor networks. In: Proceedings of Q2SWinet, pp. 95–104 (2007)Google Scholar
  3. 3.
    Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant MAC protocol for single-hop wireless networks. In: Proceedings of ACM PODC (2008)Google Scholar
  4. 4.
    Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R.,  Thapa, B.: On the performance of IEEE 802.11 under jamming. In: Proceedings of IEEE INFOCOM, pp. 1265–1273 (2008)Google Scholar
  5. 5.
    Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for simple channels. In: Proceedings of ACM SPAA (2005)Google Scholar
  6. 6.
    Bender, M.A., Fineman, J.T., Gilbert, S., Young, M.: How to scale exponential backoff: constant throughput, polylog access attempts, and robustness. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 636–654 (2016)Google Scholar
  7. 7.
    Bertier, M., Kermarrec, A.-M., Tan, G.: Message-efficient byzantine fault-tolerant broadcast in a multi-hop wireless sensor network. In: Proceedings of IEEE 30th International Conference on Distributed Computing Systems (ICDCS), pp. 408–417 (2010)Google Scholar
  8. 8.
    Brown, T., James, J., Sethi, A.: Jamming and sensing of encrypted wireless ad hoc networks. In: Proceedings of ACM International Symposium on Mobile Ad hoc Networking and Computing (MOBIHOC), pp. 120–130 (2006)Google Scholar
  9. 9.
    Chiang, J., Hu, Y.-C.: Cross-layer jamming detection and mitigation in wireless broadcast networks. In: Proceedings of MOBICOM, pp. 346–349 (2007)Google Scholar
  10. 10.
    Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-access channel. In: Proceedings of ACM PODC (2006)Google Scholar
  11. 11.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. J. Algorithms 60(2), 115–143 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dams, J., Hoefer, M., Kesselheim, T.: Jamming-resistant learning in wireless networks. In: Proceedings of International Colloquium on Automata, Languages, and Programming (ICALP), pp. 447–458 (2014)Google Scholar
  13. 13.
    Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C., Kuhn, F., Lynch, N.: Reliable distributed computing on unreliable radio channels. In: Proceedings of 2009 MOBIHOC S3 Workshop (2009)Google Scholar
  14. 14.
    Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.C.: The wireless synchronization problem. In: Proceedings of 28th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 190–199 (2009)Google Scholar
  15. 15.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel radio network: an oblivious approach to coping with malicious interference. In: Proceedings of the Symposium on Distributed Computing (DISC) (2007)Google Scholar
  16. 16.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure communication over radio channels. In: Proceedings of 27th ACM Symposium on Principles of Distributed Computing (PODC), pp. 105–114 (2008)Google Scholar
  17. 17.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-channel radio network. In: Proceedings of 21st International Symposium on Distributed Computing (DISC), pp. 208–222 (2007)Google Scholar
  18. 18.
    Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-resilient information exchange. In: Proceedings of the 28th Conference on Computer Communications. IEEE INFOCOM (2009)Google Scholar
  19. 19.
    Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.C.: Interference-resilient information exchange. In: proceedings of 28th IEEE International Conference on Computer Communications (INFOCOM), pp. 2249–2257 (2009)Google Scholar
  20. 20.
    Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sensors: on the efficiency of malicious interference in wireless networks. In: Proceedings of OPODIS (2006)Google Scholar
  21. 21.
    Gilbert, S., King, V., Pettie, S., Porat, E., Saia, J., Young, M.: (Near) Optimal resource-competitive broadcast with jamming. In: Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 257–266 (2014)Google Scholar
  22. 22.
    Gilbert, S.L., Zheng, C.: Sybilcast: broadcast on the open airwaves. In: Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 130–139 (2013)Google Scholar
  23. 23.
    Goldberg, L.A., Mackenzie, P.D., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. J. ACM 47(6), 1048 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hastad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for mulitiple accesschannels. SIAM J. Comput. 25(4), 740 (1996)MathSciNetCrossRefGoogle Scholar
  26. 26.
    IEEE: Medium access control (MAC) and physical specifications. In: IEEE P802.11/D10 (1999)Google Scholar
  27. 27.
    King, V., Saia, J., Young, M.: Conflict on a communication channel. In: Proceedings of ACM Symposium on Principles of Distributed Computing (PODC), pp. 277–286 (2011)Google Scholar
  28. 28.
    Koo, C., Bhandari, V., Katz, J., Vaidya, N.: Reliable broadcast in radio networks: the bounded collision case. In: Proceedings of ACM PODC (2006)Google Scholar
  29. 29.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Radio network clustering from scratch. In: Proceedings of ESA (2004)Google Scholar
  30. 30.
    Kwak, B.-J., Song, N.-O., Miller, L.E.: Performance analysis of exponential backoff. IEEE/ACM Trans. Netw. 13(2), 343–355 (2005)Google Scholar
  31. 31.
    Li, M., Koutsopoulos, I., Poovendran, R.: Optimal jamming attacks and network defense policies in wireless sensor networks. In: Proceedings of IEEE INFOCOM, pp. 1307–1315 (2007)Google Scholar
  32. 32.
    Liu, X., Noubir, G., Sundaram, R., Tan, S.: Spread: foiling smart jammers using multi-layer agility. In: Proceedings of IEEE INFOCOM, pp. 2536–2540 (2007)Google Scholar
  33. 33.
    Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed dating despite jammers. In: Proceedings of DCOSS (2009)Google Scholar
  34. 34.
    Navda, V., Bohra, A., Ganguly, S., Rubenstein, D.: Using channel hopping to increase 802.11 resilience to jamming attacks. In: Proceedings of IEEE INFOCOM, pp. 2526–2530 (2007)Google Scholar
  35. 35.
    Ogierman, A., Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive mac under adversarial sinr. In: Proceedings of IEEE INFOCOM (2014)Google Scholar
  36. 36.
    Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random transmission failures. In: Proceedings of ACM PODC (2005)Google Scholar
  37. 37.
    Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM J. Comput. 28(2), 709–719 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rappaport, T.: Wireless Communications. Prentice Hall PTR, Upper Saddle River (2002)Google Scholar
  39. 39.
    Richa, A., Scheideler, C., Schmid, S., Zhang, J.: A jamming-resistant MAC protocol for multi-hop wireless networks. In: Proceedings of DISC (2010)Google Scholar
  40. 40.
    Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair medium access despite reactive jamming. In: Proceedings of 31st International Conference on Distributed Computing Systems (ICDCS) (2011)Google Scholar
  41. 41.
    Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Self-stabilizing leader election for single-hop wireless networks despite jamming. In: Proceedings of 12th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC) (2011)Google Scholar
  42. 42.
    Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair throughput for co-existing networks under adversarial interference. In: Proceedings of 31st Annual ACM Symposium on Principles of Distributed Computing (PODC) (2012)Google Scholar
  43. 43.
    Scheideler, C., Richa, A., Santi, P.: An \(O(\log n)\) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: Proceedings of ACM International Symposium on Mobile Ad hoc Networking and Computing (MOBIHOC) (2008)Google Scholar
  44. 44.
    Simon, M.K., Omura, J.K., Schultz, R.A., Levin, B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York (2001)Google Scholar
  45. 45.
    Tan, H., Wacek, C., Newport, C., Sherr, M.: A disruption-resistant mac layer for multichannel wireless networks. In: Proceedings of International Conference on Principles of Distributed Systems (OPODIS), pp. 202–216 (2014)Google Scholar
  46. 46.
    Wood, A., Stankovic, J., Zhou, G.: DEEJAM: defeating energy-efficient jamming in IEEE 802.15.4-based wireless networks. In: Proceedings of SECON (2007)Google Scholar
  47. 47.
    Xu, W., Wood, T., Zhang, Y.: Channel surfing and spatial retreats: defenses against wireless denial of service. In: Proceedings of Workshop on Wireless Security (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Adrian Ogierman
    • 1
  • Andrea Richa
    • 2
  • Christian Scheideler
    • 1
  • Stefan Schmid
    • 3
  • Jin Zhang
    • 2
  1. 1.Department of Computer ScienceUniversity of PaderbornPaderbornGermany
  2. 2.Computer Science and EngineeringSCIDSE, Arizona State UniversityTempeUSA
  3. 3.Aalborg UniversityAalborgDenmark

Personalised recommendations