Distributed Computing

, Volume 32, Issue 6, pp 493–504

# Search on a line with faulty robots

• Jurek Czyzowicz
• Evangelos Kranakis
• Danny Krizanc
• Lata Narayanan
• Jaroslav Opatrny
Article

## Abstract

We consider the problem of searching on a line using n mobile robots, of which at most f are faulty, and the remaining are reliable. The robots start at the same location and move in parallel along the line with the same speed. There is a target placed on the line at a location unknown to the robots. Reliable robots can find the target when they reach its location, but faulty robots cannot detect the target. Our goal is to design a parallel algorithm minimizing the competitive ratio, represented by the worst case ratio between the time of arrival of the first reliable robot at the target, and the distance from the source to the target. If $$n \ge 2f+2$$, there is a simple algorithm with a competitive ratio of 1. For $$f< n < 2f+2$$ we develop a new class of algorithms, called proportional schedule algorithms. For any given (nf), we give a proportional schedule algorithm A(nf), whose competitive ratio is
\begin{aligned} \left( \frac{4f+4}{n} \right) ^{\frac{2f+2}{n}} \left( \frac{4f+4}{n} -2 \right) ^{1-\frac{2f+2}{n}} + 1. \end{aligned}
Setting $$a=n/f$$ as a constant, the asymptotic competitive ratio is $$\left( 4/a \right) ^{2/a} \left( 4/a -2\right) ^{1-2/a } + 1$$. Our search algorithm is easily seen to be optimal for the case $$n=f+1$$. We also show that as n tends to $$\infty$$ the competitive ratio of our algorithm for the case $$n = 2f+1$$ approaches 3 and this is optimal. More precisely, we show that asymptotically (after excluding small order terms), the competitive ratio of our proportional schedule algorithm $$A(2f+1,f)$$ is at most $$3 + \frac{4\ln n}{n}$$, while any search algorithm has a lower bound $$3 + \frac{2\ln n}{n}$$ on its competitive ratio.

## Keywords

Search on a line Faulty robots Cow-path problem Competitive ratio

## References

1. 1.
Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)
2. 2.
Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)
3. 3.
Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002)
4. 4.
Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Alphen aan den Rijn (2002)
5. 5.
Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search theory: a game-theoretic perspective. Springer Science & Business Media, Berlin (2014)
6. 6.
Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)
7. 7.
Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. 5(3), 143–154 (1995)
8. 8.
Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)
9. 9.
Beck, A., Newman, D.: Yet more on the linear search problem. Isr. J. Math. 8(4), 419–429 (1970)
10. 10.
Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)
11. 11.
Bose, P., De Carufel, J.L., Durocher, S.: Revisiting the problem of searching on a line. In: 21st European Symposium on Algorithms (ESA 2013), LNCS, vol. 8125, pp. 205–216. Springer (2013)Google Scholar
12. 12.
Bouzid, Z., Potop-Butucaru, M., Tixeuil, S.: Optimal byzantine-rezilient convergence in uni-dimensional robot network. Theor. Comput. Sci. 411(34–36), 3154–3168 (2010)
13. 13.
Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Tran. Robot. 21(3), 376–386 (2005)
14. 14.
Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) Ad-hoc, mobile, and wireless networks, LNCS, vol. 6811, pp. 346–359. Springer, Berlin (2011)
15. 15.
Chrobak, M., Gasieniec, L., T., G., Martin, R.: Group search on the line. In: Proceedings of SOFSEM 2015, LNCS 8939, pp. 164–176. Springer (2015)Google Scholar
16. 16.
Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 41(1), 1516–1528 (2005)
17. 17.
Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)
18. 18.
Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: Monitoring a graph using faulty mobile robots. In: Algorithms and Computation—Proceedings of 26th International Symposium, ISAAC 2015, pp. 343–354 (2015)Google Scholar
19. 19.
Défago, X., Gradinariu, M., Messika, S., Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. Proc. DISC 2006, 46–60 (2006)
20. 20.
Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)
21. 21.
Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: Proceedings of 32nd Annual Symposium on FOCS, pp. 298–303. IEEE Computer Society (1991)Google Scholar
22. 22.
Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)
23. 23.
Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM symposium on Principles of distributed computing, pp. 77–86. ACM (2012)Google Scholar
24. 24.
Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111, 1027–1031 (2011)
25. 25.
Gluss, B.: An alternative solution to the lost at sea problem. Naval Res. Logist. Quart. 8(1), 117–122 (1961)
26. 26.
Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)
27. 27.
Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting & gossiping). In: Ding-Zhu, D., Hsu, F. (eds.) Combinatorial network theory, pp. 125–212. Springer, Berlin (1996)
28. 28.
Isbell, J.R.: Pursuit around a hole. Naval Res. Logist. Quart. 14(4), 569–571 (1967)
29. 29.
Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)
30. 30.
Kleinberg, J.: On-line search in a simple polygon. In: Proceedings of SODA, pp. 8–15. SIAM (1994)Google Scholar
31. 31.
Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the forty-second ACM symposium on Theory of computing, pp. 513–522. ACM (2010)Google Scholar
32. 32.
Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)
33. 33.
Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
34. 34.
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
35. 35.
Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Proceedings of ICALP, LNCS, vol. 372, pp. 610–620. Springer (1989)Google Scholar
36. 36.
Schuierer, S.: Lower bounds in on-line geometric searching. Comput. Geom. 18(1), 37–53 (2001)
37. 37.
Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. Principles of Distributed Systems pp. 333–349 (2006)Google Scholar
38. 38.
Thrun, S.: A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 20(5), 335–363 (2001)
39. 39.
Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of 2nd international conference on Autonomous agents, pp. 47–53. ACM (1998)Google Scholar
40. 40.
Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

© Springer-Verlag Berlin Heidelberg 2017

## Authors and Affiliations

• Jurek Czyzowicz
• 1
• Evangelos Kranakis
• 2
• Danny Krizanc
• 3
• Lata Narayanan
• 4
• Jaroslav Opatrny
• 4
1. 1.Dept. d’informatiqueUniversité d’OutaouaisGatineauCanada
2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
4. 4.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada