Distributed Computing

, Volume 29, Issue 4, pp 279–315 | Cite as

Modelling and verifying the AODV routing protocol

  • Rob van Glabbeek
  • Peter Höfner
  • Marius Portmann
  • Wee Lum Tan
Article

Abstract

This paper presents a formal specification of the Ad hoc On-demand Distance Vector (AODV) routing protocol using AWN (Algebra for Wireless Networks), a recent process algebra which has been tailored for the modelling of mobile ad hoc networks and wireless mesh network protocols. Our formalisation models the exact details of the core functionality of AODV, such as route discovery, route maintenance and error handling. We demonstrate how AWN can be used to reason about critical protocol properties by providing detailed proofs of loop freedom and route correctness.

Keywords

Wireless mesh networks Mobile ad-hoc networks Routing protocols AODV Process algebra AWN Loop freedom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergstra J.A., Klop J.W.: Algebra of communicating processes with abstraction. Theor. Comput. Sci. 37(1), 77–121 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bhargavan K., Gunter C.A., Kim M., Lee I., Obradovic D., Sokolsky O., Viswanathan M.: Verisim: formal analysis of network simulations. IEEE Trans. Softw. Eng. 28(2), 129–145 (2002). doi:10.1109/32.988495 CrossRefGoogle Scholar
  3. 3.
    Bhargavan K., Obradovic D., Gunter C.A.: Formal verification of standards for distance vector routing protocols. JACM 49(4), 538–576 (2002). doi:10.1145/581771.581775 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bolognesi T., Brinksma E.: Introduction to the ISO specification language LOTOS. Comput. Netw. 14, 25–59 (1987). doi:10.1016/0169-7552(87)90085-7 Google Scholar
  5. 5.
    Borgström, J., Huang, S., Johansson, M., Raabjerg, P., Victor, B., Pohjola, J.Å., Parrow, J.: Broadcast psi-calculi with an application to wireless protocols. In: Barthe, G., Pardo, A., Schneider, G. (eds.) Software Engineering and Formal Methods (SEFM’11), Lecture Notes in Computer Science, vol. 7041, pp. 74–89. Springer (2011). doi:10.1007/978-3-642-24690-6_7
  6. 6.
    Bourke, T., van Glabbeek, R.J., Höfner, P.: A mechanized proof of loop freedom of the (untimed) AODV routing protocol. In: Cassez, F., Raskin, J.F. (eds.) Automated Technology for Verification and Analysis (ATVA’14), Lecture Notes in Computer Science, vol. 8837, pp. 47–63. Springer (2014). doi:10.1007/978-3-319-11936-6_5
  7. 7.
    Bourke, T., van Glabbeek, R.J., Höfner, P.: Showing invariance compositionally for a process algebra for network protocols. In: Klein, G., Gamboa, R. (eds.) Interactive Theorem Proving (ITP’14), Lecture Notes in Computer Science, vol. 8558, pp. 144–159. Springer (2014). doi:10.1007/978-3-319-08970-6_10
  8. 8.
    Bres, E., van Glabbeek, R.J., Höfner, P.: A Timed Process Algebra for Wireless Networks with an Application in Routing. Technical Report 9145, NICTA (2016). http://nicta.com.au/pub?id=9145 [Extended Abstract in: Thiemann, P. (ed.) European Symposium on Programming (ESOP ’16). Lecture Notes in Computer Science, vol. 9632. Springer (2016). doi: 10.1007/978-3-662-49498-1_5]
  9. 9.
    Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Formal Methods for Open Object-based Distributed Systems (FMOODS’05), Lecture Notes in Computer Science, vol. 3535, pp. 306–322. Springer (2005). doi:10.1007/11494881_20
  10. 10.
    Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC 3626 (Experimental), Network Working Group (2003). http://www.ietf.org/rfc/rfc3626.txt
  11. 11.
    Das S.R., Castañeda R., Yan J.: Simulation-based performance evaluation of routing protocols for mobile ad hoc networks. Mob. Netw. Appl. 5(3), 179–189 (2000). doi:10.1023/A:1019108612308 CrossRefMATHGoogle Scholar
  12. 12.
    Edenhofer, S., Höfner, P.: Towards a rigorous analysis of AODVv2 (DYMO). In: Rigorous Protocol Engineering (WRiPE ’12). IEEE (2012). doi:10.1109/ICNP.2012.6459942
  13. 13.
    Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In: Parallel and Distributed Processing Symposium (IPDPS ’01), pp. 1516–1525. IEEE Computer Society (2001). doi:10.1109/IPDPS.2001.925136
  14. 14.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’12), Lecture Notes in Computer Science, vol. 7214, pp. 173–187. Springer (2012). doi:10.1007/978-3-642-28756-5_13
  15. 15.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A process algebra for wireless mesh networks. In: Seidl, H. (ed.) European Symposium on Programming (ESOP ’12)x, Lecture Notes in Computer Science, vol. 7211, pp. 295–315. Springer (2012). doi:10.1007/978-3-642-28869-2_15
  16. 16.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.: A process algebra for wireless mesh networks used for modelling, verifying and analysing AODV. Technical Report 5513, NICTA (2013). http://arxiv.org/abs/1312.7645
  17. 17.
    Garcia-Luna-Aceves, J.J.: A unified approach to loop-free routing using distance vectors or link states. In: Symposium Proceedings on Communications, Architectures and Protocols (SIGCOMM ’89), ACM SIGCOMM Computer Communication Review, vol. 19(4), pp. 212–223. ACM Press (1989). doi:10.1145/75246.75268
  18. 18.
    Garcia-Luna-Aceves, J.J., Rangarajan, H.: A new framework for loop-free on-demand routing using destination sequence numbers. In: Mobile Ad-hoc and Sensor Systems (MASS’ 04), pp. 426–435. IEEE (2004). doi:10.1109/MAHSS.2004.1392182
  19. 19.
    Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted broadcast process theory. In: Cerone, A., Gruner, S. (eds.) Software Engineering and Formal Methods (SEFM ’08), pp. 345–354. IEEE Computer Society (2008). doi:10.1109/SEFM.2008.25
  20. 20.
    Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J. (eds.) Coordination Models and Languages (COORDINATION ’07), Lecture Notes in Computer Science, vol. 4467, pp. 132–150. Springer (2007). doi:10.1007/978-3-540-72794-1_8
  21. 21.
    Godskesen, J.C.: Observables for mobile and wireless broadcasting systems. In: Clarke, D., Agha, G.A. (eds.) Coordination Models and Languages (COORDINATION ’10), Lecture Notes in Computer Science, vol. 6116, pp. 1–15. Springer (2010). doi:10.1007/978-3-642-13414-2_1
  22. 22.
    Griffin T.G., Sobrinho J.: Metarouting. SIGCOMM Comput. Commun. Rev. 35(4), 1–12 (2005). doi:10.1145/1090191.1080094 CrossRefGoogle Scholar
  23. 23.
    Guerrero-Zapata, M., Asokan, N.: Securing Ad Hoc Routing Protocols. In: Proceedings of the 2002 ACM Workshop on Wireless Security (WiSe 2002), pp. 1–10. ACM Press (2002). doi:10.1145/570681.570682
  24. 24.
    Hoare C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  25. 25.
    Höfner, P., van Glabbeek, R.J., Tan, W.L., Portmann, M., McIver, A.K., Fehnker, A.: A rigorous analysis of AODV and its variants. In: Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’12), pp. 203–212. ACM Press (2012). doi:10.1145/2387238.2387274
  26. 26.
    IEEE: IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 10: Mesh Networking (2011). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6018236
  27. 27.
    Jacquet, P., Laouiti, A., Minet, P., Viennot, L.: Performance of multipoint relaying in ad hoc mobile routing protocols. In: Gregori, E., Conti, M., Campbell, A.T., Omidyar, G., Zukerman, M. (eds.) Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications (NETWORKING ’02), Lecture Notes in Computer Science, pp. 387–398. Springer (2002). doi:10.1007/3-540-47906-6_31
  28. 28.
    Johnson, D., Hu, Y., Maltz, D.: The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4. RFC 4728 (Experimental), Network Working Group (Errata Exist) (2007). http://www.ietf.org/rfc/rfc4728.txt
  29. 29.
    Maltz D., Broch J., Johnson D.B.: Lessons from a full-scale multihop wireless ad hoc network testbed. IEEE Pers. Commun. 8(1), 8–15 (2001). doi:10.1109/98.904894 CrossRefGoogle Scholar
  30. 30.
    Merlin P.M., Segall A.: A failsafe distributed routing protocol. IEEE Trans. Commun. 27(9), 1280–1287 (1979). doi:10.1109/TCOM.1979.1094552 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Merro M.: An observational theory for mobile ad hoc networks (full version). Inf. Comput. 207(2), 194–208 (2009). doi:10.1016/j.ic.2007.11.010 MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Mezzetti N., Sangiorgi D.: Towards a calculus for wireless systems. Electr. Notes Theor. Comput. Sci. 158, 331–353 (2006). doi:10.1016/j.entcs.2006.04.017 CrossRefMATHGoogle Scholar
  33. 33.
    Milner R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  34. 34.
    Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks: design, analysis and experiments. In: Conference on Information Communications (INFOCOM ’10), pp. 2793–2801. IEEE (2010). doi:10.1109/INFCOM.2010.5462111
  35. 35.
    Nanz S., Hankin C.: A framework for security analysis of mobile wireless networks. Theor. Comput. Sci. 367, 203–227 (2006). doi:10.1016/j.tcs.2006.08.036 MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Neumann, A., Aichele C. Lindner, M., Wunderlich, S.: Better approach to mobile ad-hoc networking (B.A.T.M.A.N.). Internet-Draft (Experimental), Network Working Group (2008). http://tools.ietf.org/html/draft-openmesh-b-a-t-m-a-n-00
  37. 37.
    The network simulator ns-2. http://nsnam.isi.edu/nsnam/index.php/Main_Page (accessed 20 December 2013)
  38. 38.
    Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc on-demand distance vector (AODV) routing. RFC 3561 (Experimental), Network Working Group (2003). http://www.ietf.org/rfc/rfc3561.txt
  39. 39.
    Perkins C.E., Belding-Royer E.M., Das S.R., Marina M.K.: Performance comparison of two on-demand routing protocols for ad hoc networks. IEEE Pers. Commun. 8(1), 16–28 (2001). doi:10.1109/98.904895 CrossRefGoogle Scholar
  40. 40.
    Perkins, C.E., Ratliff, S., Dowdell, J.: Dynamic MANET on-demand (AODVv2) routing. Internet Draft (Standards Track), Mobile Ad hoc Networks Working Group (2013). http://tools.ietf.org/html/draft-ietf-manet-aodvv2-02
  41. 41.
    Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Mobile Computing Systems and Applications (WMCSA ’99), pp. 90–100. IEEE (1999). doi:10.1109/MCSA.1999.749281
  42. 42.
    Pirzada A.A., Portmann M., Indulska J.: Performance analysis of multi-radio AODV in hybrid wireless mesh networks. Comput. Commun. 31(5), 885–895 (2008). doi:10.1016/j.comcom.2007.12.012 CrossRefGoogle Scholar
  43. 43.
    Pirzada A.A., Portmann M., Wishart R., Indulska J.: SafeMesh: a wireless mesh network routing protocol for incident area communications. Pervas. Mobile Comput. 5(2), 201–221 (2009). doi:10.1016/j.pmcj.2008.11.005 CrossRefGoogle Scholar
  44. 44.
    Prasad K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2-3), 285–327 (1995). doi:10.1016/0167-6423(95)00017-8 MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ramachandran, K., Buddhikot, M.M., Chandranmenon, G., Miller, S., Belding-Royer, E.M., Almeroth, K.: On the design and implementation of infrastructure mesh networks. In: IEEE Workshop on Wireless Mesh Networks (WiMesh’05). IEEE (2005)Google Scholar
  46. 46.
    Rangarajan, H., Garcia-Luna-Aceves, J.J.: Making on-demand routing protocols based on destination sequence numbers robust. In: Communications (ICC ’05), vol. 5, pp. 3068–3072 (2005). doi:10.1109/ICC.2005.1494958
  47. 47.
    SCALABLE Network Technologies: QualNet communications simulation platform. http://web.scalable-networks.com/content/qualnet. Accessed 20 December 2013
  48. 48.
    Singh A., Ramakrishnan C.R., Smolka S.A.: A process calculus for mobile ad hoc networks. Sci. Comput. Program. 75, 440–469 (2010). doi:10.1016/j.scico.2009.07.008 MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Subramanian, A.P., Buddhikot, M.M., Miller, S.: Interference aware routing in multi-radio wireless mesh networks. In: IEEE Workshop on Wireless Mesh Networks (WiMesh ’06). IEEE (2006)Google Scholar
  50. 50.
    Tschudin, C.F.: Lightweight underlay network ad hoc routing (LUNAR) protocol. Internet Draft (Expired), Mobile Ad Hoc Networking Working Group (2004). http://user.it.uu.se/~rmg/pub/draft-tschudin-manet-lunar-00.txt
  51. 51.
    Tschudin, C.F., Gold, R., Rensfelt, O., Wibling, O.: LUNAR: a lightweight underlay network ad-hoc routing protocol and implementation. In: Koucheryavy, Y. Harju, J., Koucheryavy, A. (eds.) Next Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN ’04) (2004)Google Scholar
  52. 52.
    van Glabbeek, R.J., Höfner, P., Tan, W.L., Portmann, M.: Sequence numbers do not guarantee loop freedom—AODV can yield routing loops. In: Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’13), pp. 91–100. ACM Press (2013). doi:10.1145/2507924.2507943
  53. 53.
    Yang H., Luo H., Ye F., Lu S., Zhang L.: Security in mobile ad hoc networks: challenges and solutions. IEEE Wirel. Commun. 11(1), 38–47 (2004). doi:10.1109/MWC.2004.1269716 CrossRefGoogle Scholar
  54. 54.
    Zave P.: Using lightweight modeling to understand chord. SIGCOMM Comput. Commun. Rev. 42(2), 49–57 (2012). doi:10.1145/2185376.2185383 CrossRefGoogle Scholar
  55. 55.
    Zhou, M., Yang, H., Zhang, X., Wang, J.: The proof of AODV loop freedom. In: Wireless Communications and Signal Processing (WCSP ’09). IEEE (2009). doi:10.1109/WCSP.2009.5371479

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rob van Glabbeek
    • 1
  • Peter Höfner
    • 1
  • Marius Portmann
    • 2
  • Wee Lum Tan
    • 3
  1. 1.NICTA and UNSWSydneyAustralia
  2. 2.The University of QueenslandBrisbaneAustralia
  3. 3.Griffith UniversityBrisbaneAustralia

Personalised recommendations