Distributed Computing

, Volume 29, Issue 1, pp 51–64 | Cite as

Time versus cost tradeoffs for deterministic rendezvous in networks

  • Avery MillerEmail author
  • Andrzej Pelc


Two mobile agents, starting from different nodes of a network at possibly different times, have to meet at the same node. This problem is known as rendezvous. Agents move in synchronous rounds. Each agent has a distinct integer label from the set \(\{1,\ldots ,L\}\). Two main efficiency measures of rendezvous are its time (the number of rounds until the meeting) and its cost (the total number of edge traversals). We investigate tradeoffs between these two measures. A natural benchmark for both time and cost of rendezvous in a network is the number of edge traversals needed for visiting all nodes of the network, called the exploration time. Hence we express the time and cost of rendezvous as functions of an upper bound E on the time of exploration (where E and a corresponding exploration procedure are known to both agents) and of the size L of the label space. We present two natural rendezvous algorithms. Algorithm Cheap has cost O(E) (and, in fact, a version of this algorithm for the model where the agents start simultaneously has cost exactly E) and time O(EL). Algorithm Fast has both time and cost \(O(E\log L)\). Our main contributions are lower bounds showing that, perhaps surprisingly, these two algorithms capture the tradeoffs between time and cost of rendezvous almost tightly. We show that any deterministic rendezvous algorithm of cost asymptotically E (i.e., of cost \(E+o(E)\)) must have time \(\varOmega (EL)\). On the other hand, we show that any deterministic rendezvous algorithm with time complexity \(O(E\log L)\) must have cost \(\varOmega (E\log L)\).


Rendezvous Deterministic algorithm  Mobile agent  Cost Time 



We thank the anonymous referee for suggesting Algorithm FastWithRelabeling, which replaces a less efficient algorithm that we had in an earlier version. This work was partially supported by NSERC discovery Grant 8136-2013 and by the Research Chair in Distributed Computing at the Université du Québec en Outaouais.


  1. 1.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29, 1164–1188 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223Google Scholar
  3. 3.
    Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Alpern, S.: Rendezvous search on labelled networks. Nav. Res. Logist. 49, 256–274 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous.International Series in Operations research and Management Science. Kluwer, Dordrecht (2002)Google Scholar
  6. 6.
    Ambuehl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), 17:1–17:21 (2011)Google Scholar
  7. 7.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. J. Appl. Probab. 28, 839–851 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proceedings of the 14th Annual ACM Symposium on Computational Geometry, pp. 365–373 (1998)Google Scholar
  9. 9.
    Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Oper. Res. 49, 107–118 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discret. Appl. Math. 68, 17–32 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Averbakh, I., Berman, O.: \((p-1)/(p+1)\)-approximate algorithms for \(p\)-traveling salesmen problems on a tree with minmax objective. Discret. Appl. Math. 75, 201–216 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Proceedings of the 24th International Symposium on Distributed Computing (DISC 2010), pp. 297–311Google Scholar
  14. 14.
    Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. Control Optim. 36, 1880–1889 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Nav. Res. Logist. 48, 722–731 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Bender, M.A., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 75–85Google Scholar
  18. 18.
    Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18, 231–254 (1995)Google Scholar
  19. 19.
    Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph: applications of universal sequences. In: Proceedings of the 14th International Conference on Principles of Distributed Systems (OPODIS 2010), pp. 119–134Google Scholar
  20. 20.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41, 829–879 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25, 165–178 (2012)CrossRefzbMATHGoogle Scholar
  22. 22.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)Google Scholar
  23. 23.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32, 265–297 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355, 315–326 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theor. Comput. Sci. 326, 343–362 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Dieudonné, Y., Pelc, A.: Deterministic network exploration by anonymous silent agents with local traffic reports. ACM Trans. Algorithms 11(2), 10:1–10:29 (2014)CrossRefGoogle Scholar
  29. 29.
    Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. SIAM J. Comput. 44(3), 844–867 (2015)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2(3), 380–402 (2006)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Proceedings of the 13th European Symposium on Algorithms (ESA 2005), pp. 11–22Google Scholar
  32. 32.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees, ACM Trans. Algorithms 9(2), 17:1–17:24 (2013)Google Scholar
  35. 35.
    Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131Google Scholar
  37. 37.
    Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theor. Comput. Sci. 399, 141–156 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Kranakis, E., Krizanc, D., Morin, P.: Randomized rendezvous with limited memory. ACM Trans. Algorithms 7(3), 34 (2011)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599Google Scholar
  40. 40.
    Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. Control Optim. 34, 1650–1665 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59, 331–347 (2012)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Redei, L.: Ein kombinatorischer Satz. Acta Litt. Szeged 7, 39–43 (1934)Google Scholar
  44. 44.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)Google Scholar
  45. 45.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Thomas, L.: Finding your kids when they are lost. J. Oper. Res. Soc. 43, 637–639 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Université du Québec en OutaouaisGatineauCanada

Personalised recommendations