Distributed Computing

, Volume 30, Issue 5, pp 339–355 | Cite as

Breathe before speaking: efficient information dissemination despite noisy, limited and anonymous communication

  • Ofer Feinerman
  • Bernhard Haeupler
  • Amos Korman


Distributed computing models typically assume reliable communication between processors. While such assumptions often hold for engineered networks, e.g., due to underlying error correction protocols, their relevance to biological systems, wherein messages are often distorted before reaching their destination, is quite limited. In this study we take a first step towards reducing this gap by rigorously analyzing a model of communication in large anonymous populations composed of simple agents which interact through short and highly unreliable messages. We focus on the broadcast problem and the majority-consensus problem. Both are fundamental information dissemination problems in distributed computing, in which the goal of agents is to converge to some prescribed desired opinion. We initiate the study of these problems in the presence of communication noise. Our model for communication is extremely weak and follows the push gossip communication paradigm: In each round each agent that wishes to send information delivers a message to a random anonymous agent. This communication is further restricted to contain only one bit (essentially representing an opinion). Lastly, the system is assumed to be so noisy that the bit in each message sent is flipped independently with probability \(1/2-\epsilon \), for some small \(\epsilon >0\). Even in this severely restricted, stochastic and noisy setting we give natural protocols that solve the noisy broadcast and majority-consensus problems efficiently. Our protocols run in \(O(\log n/\epsilon ^2)\) rounds and use \(O(n \log n / \epsilon ^2)\) messages/bits in total, where n is the number of agents. These bounds are asymptotically optimal and, in fact, are as fast and message efficient as if each agent would have been simultaneously informed directly by an agent that knows the prescribed desired opinion. Our efficient, robust, and simple algorithms suggest balancing between silence and transmission, synchronization, and majority-based decisions as important ingredients towards understanding collective communication schemes in anonymous and noisy populations.


Gossip Information dissemination Noise Rumor spreading Consensus Reliability 



The authors would like to thank Oded Goldreich, Kunal Talwar, James Aspnes, and George Giakkoupis for helpful discussions.


  1. 1.
    Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183–5 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Allen, C., Stevens, C.: An evaluation of causes for unreliability of synaptic transmission. Proc. Natl. Acad. Sci. 91, 10380–10383 (1994)CrossRefGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. TAAS 3(4) (2008)Google Scholar
  6. 6.
    Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87–102 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bull. EATCS 93, 98–117 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bassler, B.L., Waters, C.M.: Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005)CrossRefGoogle Scholar
  9. 9.
    Bar-Yehuda, R., Kutten, S.: Fault tolerant distributed majority commitment. J. Algorithms 9(4), 568–582 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Beauquier, J., Burman, J., Kutten, S.: Making population protocols self-stabilizing. SSS 90–104 (2009)Google Scholar
  11. 11.
    Becchetti, L., Clementi, A.E.F., Natale, E., Pasquale, F., Silvestri, R., Trevisan, L.: Simple dynamics for plurality consensus. SPAA 247–256 (2014)Google Scholar
  12. 12.
    Ben-Shahar, O., Dolev, S., Dolgin, A., Segal, M.: Direction election in flocking swarms. Ad Hoc Netw. 12, 250–258 (2014)CrossRefGoogle Scholar
  13. 13.
    Buck, J.: Synchronous rhythmic flashing of fireflies II. Q. Rev. Biol. 63(3), 265–289 (1988)CrossRefGoogle Scholar
  14. 14.
    Brumm, H., Slabbekoorn, H.: Acoustic communication in noise. Adv. Study Behav. 35, 151–209 (2005)CrossRefGoogle Scholar
  15. 15.
    Carrol, M.C.: The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981–986 (2004)CrossRefGoogle Scholar
  16. 16.
    Censor-Hillel, K., Haeupler, B., Kelner, J. A., Maymounkov, P.: Global computation in a poorly connected world: fast rumor-spreading with no dependence on conductance. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 961–970 (2012)Google Scholar
  17. 17.
    Chazelle, B.: Natural algorithms. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 422–431 (2009)Google Scholar
  18. 18.
    Cooper, C., Elsässer, R., Radzik, T.: The power of two choices in distributed voting. ICALP 2, 435–446 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database maintenance. Oper. Syst. Rev. 22(1), 8–32 (1988)CrossRefGoogle Scholar
  20. 20.
    Devdatt, D., Desh, R.: Balls and bins: a study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Diks, K., Pelc, A.: Optimal adaptive broadcasting with a bounded fraction of faulty nodes. Algorithmica 28(1), 37–50 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing consensus with the power of two choices. In: SPAA, pp. 149–158 (2011)Google Scholar
  23. 23.
    Doerr, B., Fouz, M.: Asymptotically optimal rumor-spreading. In: Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP), pp. 502–513 (2011)Google Scholar
  24. 24.
    Elsässer, R., Sauerwald, T.: On the runtime and robustness of randomized broadcasting. Theor. Comput. Sci. 410(36), 3414–3427 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 137–146 (2013)Google Scholar
  26. 26.
    Feinerman, O., Jentsch, G., Tkach, K., Coward, J., Hathorn, M., Sneddon, M., Emonet, T., Smith, K., Altan-Bonnet, G.: Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437 (2010)CrossRefGoogle Scholar
  27. 27.
    Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative search and implications for biology. In: Proceedings of the 26th International Symposium on Distributed Computing (DISC), pp. 61–75 (2012)Google Scholar
  28. 28.
    Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the plane without communication. In: Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC), pp. 77–86 (2012)Google Scholar
  29. 29.
    Feinerman, O., Veiga, J., Dorfman, J., Germain, R., Altan-Bonnet, G.: Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321(5892), 1081–1084 (2008)CrossRefGoogle Scholar
  30. 30.
    Franks, N.R., Pratt, S.C., Mallon, E.B., Britton, N.F., Sumpter, D.J.T.: Information flow, opinion polling and collective intelligence in house hunting social insects. R. Soc. B 537(1427), 1567–1583 (2002)CrossRefGoogle Scholar
  31. 31.
    El Gamal, A., Kim, Y.H.: Network Information Theory. Cambridge University Press, Cambridge (2012)Google Scholar
  32. 32.
    Georgiou, C., Gilbert, S., Guerraoui, R., Kowalski, D.R.: Asynchronous gossip. J. ACM 60(2), 11 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gasieniec, L., Pelc, A.: Adaptive broadcasting with faulty nodes. Parallel Comput. 22(6), 903–912 (1996)CrossRefzbMATHGoogle Scholar
  34. 34.
    Giakkoupis, G., Sauerwald, T.: rumor-spreading and vertex expansion. In: Proceedigs of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1623–1641 (2012)Google Scholar
  35. 35.
    Haeupler, B.: Analyzing network coding gossip made easy. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 293–302 (2011)Google Scholar
  36. 36.
    Haeupler, B., Malkhi, D.: Optimal gossip with direct addressing. In: Proceedigs of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 176–185 (2014)Google Scholar
  37. 37.
    Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., Yuste, R.: Synfire chains and cortical songs: temporal modules of cortical activity. Science 304(5670), 559–564 (2004)CrossRefGoogle Scholar
  38. 38.
    Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 286–295 (1983)Google Scholar
  39. 39.
    Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise. IEEE Trans. Signal Process. 57(1), 355–369 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor-spreading. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pp. 565–574 (2000)Google Scholar
  41. 41.
    Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Lengagne, T., Aubin, T., Lauga, J., Jouventin, P.J.: How do king penguins (Aptenodytes patagonicus) apply the mathematical theory of information to communicate in windy conditions? Proc. R. Soc. B Biol. Sci. 266(1429), 1623–1628 (1999)CrossRefGoogle Scholar
  43. 43.
    Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: Natural models for evolution on networks. Theor. Comput. Sci. 477, 76–95 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412(22), 2434–2450 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(16128) (2002)Google Scholar
  46. 46.
    Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91(028701), 1–4 (2003)Google Scholar
  47. 47.
    Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. P08029 (2007)Google Scholar
  48. 48.
    Moon, T.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley-Interscience, New York (2005)CrossRefzbMATHGoogle Scholar
  49. 49.
    Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the Chernoff–Hoeffding bounds. SIAM J. Comput. 26, 350–368 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)Google Scholar
  51. 51.
    Pittel, Boris: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Razin, N., Eckmann, J.P., Feinerman, O.: Desert ants achieve reliable recruitment across noisy interactions. J. R. Soc. Interface 10(20130079) (2013)Google Scholar
  53. 53.
    Roberts, G.: Why individual vigilance increases as group size increases. Anim. Behav. 51, 1077–1086 (1996)CrossRefGoogle Scholar
  54. 54.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Sumpter, D.J.T., Krause, J., James, R., Couzin, I.D., Ward, A.J.W.: Consensus decision making by fish. Curr. Biol. 22(25), 1773–1777 (2008)CrossRefGoogle Scholar
  56. 56.
    Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J., Eisen, H.N.: Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4(6), 565–571 (1996)CrossRefGoogle Scholar
  57. 57.
    Doerr, B., Huber, A., Levavi, A.: Strong robustness of randomized rumor-spreading protocols. In: Proceedings of the International Symposium on Algorithms and Computation (ISAAC), pp. 812–821 (2009)Google Scholar
  58. 58.
    Wilson, E.O., Holldobler, B.: The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. W. W. Norton & Company, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ofer Feinerman
    • 1
  • Bernhard Haeupler
    • 2
  • Amos Korman
    • 3
  1. 1.The Shlomo and Michla Tomarin Career Development Chair, Department of Physics of Complex SystemsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  3. 3.The Laboratory of Computer Algorithms: Fundamentals and Applications (LIAFA), CNRSUniversity Paris DiderotParisFrance

Personalised recommendations