Distributed Computing

, Volume 28, Issue 6, pp 423–441 | Cite as

Multidimensional agreement in Byzantine systems

  • Hammurabi Mendes
  • Maurice Herlihy
  • Nitin Vaidya
  • Vijay K. Garg


Consider a network of \(n\) processes, where each process inputs a \(d\)-dimensional vector of reals. All processes can communicate directly with others via reliable FIFO channels. We discuss two problems. The multidimensional Byzantine consensus problem, for synchronous systems, requires processes to decide on a single \(d\)-dimensional vector \(v \in {\mathbb {R}}^d\), inside the convex hull of \(d\)-dimensional vectors that were input by the non-faulty processes. Also, the multidimensional Byzantine approximate agreement (MBAA) problem, for asynchronous systems, requires processes to decide on multiple \(d\)-dimensional vectors in \({\mathbb {R}}^d\), all within a fixed Euclidean distance \(\epsilon \) of each other, and inside the convex hull of \(d\)-dimensional vectors that were input by the non-faulty processes. We obtain the following results for the problems above, while tolerating up to \(f\) Byzantine failures in systems with complete communication graphs: (1) In synchronous systems, \(n > \max \{3f, (d+1)f\}\) is necessary and sufficient to solve the multidimensional consensus problem. (2) In asynchronous systems, \(n > (d+2)f\) is necessary and sufficient to solve the multidimensional approximate agreement problem. Our sufficiency proofs are constructive, giving explicit protocols for the problems. In particular, for the MBAA problem, we give two protocols with strictly different properties and applications.


Approximate agreement Higher dimension Vector inputs Byzantine protocols 


  1. 1.
    Abraham, I., Amit, Y., Dolev, D.: Optimal resilience asynchronous approximate agreement. In: Higashino, T. (ed.) Principles of Distributed Systems. Lecture Notes in Computer Science, vol. 3544, pp. 229–239. Springer, Berlin (2005)Google Scholar
  2. 2.
    Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points. In: Proceedings of the 20th Annual Symposium on Computational Geometry (SCG), pp. 61–67. ACM, New York, NY, USA (2004)Google Scholar
  3. 3.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Dolev, D., Hoch, E.: Brief announcement: simple gradecast based algorithms. In: Lynch, N., Shvartsman, A. (eds.) Distributed Computing. Lecture Notes in Computer Science, vol. 6343, pp. 194–197. Springer, Berlin (2010)Google Scholar
  5. 5.
    Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal Byzantine-resilient convergence in uni-dimensional robot networks. Theor. Comput. Sci. 411(34–36), 3154–3168 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Klee, V.L. (ed.) Proceedings of the Seventh Symposium in Pure Mathematics, vol. 7, pp. 101–180. American Mathematical Society (1963)Google Scholar
  9. 9.
    Dolev, D., Lynch, N., Pinter, S., Stark, E., Weihl, W.: Reaching approximate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in Byzantine agreement. J. ACM 37(4), 720–741 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Doudou, A., Schiper, A.: Muteness detectors for consensus with Byzantine processes. In: Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’98, p. 315. ACM, New York, NY, USA (1998)Google Scholar
  12. 12.
    Fekete, A.: Asymptotically optimal algorithms for approximate agreement. Distrib. Comput. 4(1), 9–29 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fischer, M., Lynch, N., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distrib. Comput. 1(1), 26–39 (1986)zbMATHCrossRefGoogle Scholar
  14. 14.
    Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)Google Scholar
  15. 15.
    Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time. Discrete Comput. Geom. 12(1), 291–312 (1994)Google Scholar
  16. 16.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)Google Scholar
  17. 17.
    Mendes, H., Herlihy, M.: Multidimensional approximate agreement in Byzantine asynchronous systems. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pp. 391–400. STOC’13. ACM, New York, NY, USA (2013). doi: 10.1145/2488608.2488657
  18. 18.
    Miller, G.L., Sheehy, D.R.: Approximate centerpoints with proofs. Comput. Geom. 43(8), 647–654 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Mulzer, W., Werner, D.: Approximating Tverberg points in linear time for any fixed dimension. In: Proceedings of the 28th Annual Symposium on Computational Geometry, SoCG ’12, pp. 303–310. ACM, New York, NY, USA (2012)Google Scholar
  20. 20.
    Munkres, J.: Elements of Algebraic Topology, 2nd edn. Prentice Hall, Englewood Cliffs (1984)zbMATHGoogle Scholar
  21. 21.
    Neves, N.F., Correia, M., Verissimo, P.: Solving vector consensus with a wormhole. IEEE Trans. Parallel Distrib. Syst. 16(12), 1120–1131 (2005)CrossRefGoogle Scholar
  22. 22.
    Perles, M., Sigron, M.: A generalization of the Tverberg’s theorem (2007). arXiv:0710.4668
  23. 23.
    Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile robots: an introductory survey. In: 14th International Conference on Network-Based Information Systems, NBiS’11, pp. 318–324 (2011)Google Scholar
  24. 24.
    Saari, D.: Basic Geometry of Voting. Springer, Berlin (1995)zbMATHCrossRefGoogle Scholar
  25. 25.
    Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)CrossRefGoogle Scholar
  26. 26.
    Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. s1–41(1), 123–128 (1966)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Vaidya, N., Garg, V.K.: Byzantine vector consensus in complete graphs. In: Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC ’13. ACM, New York, NY, USA (2013). doi: 10.1145/2484239.2484256

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hammurabi Mendes
    • 1
  • Maurice Herlihy
    • 1
  • Nitin Vaidya
    • 2
  • Vijay K. Garg
    • 3
  1. 1.Computer Science DepartmentBrown UniversityProvidenceUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Electrical and Computer Engineering DepartmentUniversity of Texas at AustinAustinUSA

Personalised recommendations