Distributed Computing

, Volume 29, Issue 2, pp 105–125 | Cite as

Concurrent imitation dynamics in congestion games

  • Heiner Ackermann
  • Petra Berenbrink
  • Simon Fischer
  • Martin Hoefer
Article

Abstract

Imitating successful behavior is a natural and frequently applied approach when facing complex decision problems. In this paper, we design protocols for distributed latency minimization in atomic congestion games based on imitation. We propose to study concurrent dynamics that emerge when each agent samples another agent and possibly imitates this agent’s strategy if the anticipated latency gain is sufficiently large. Our focus is on convergence properties. We show convergence in a monotonic fashion to stable states, in which none of the agents can improve their latency by imitating others. As our main result, we show rapid convergence to approximate equilibria, in which only a small fraction of agents sustains a latency significantly above or below average. Imitation dynamics behave like an FPTAS, and the convergence time depends only logarithmically on the number of agents. Imitation processes cannot discover unused strategies, and strategies may become extinct with non-zero probability. For singleton games we show that the probability of this event occurring is negligible. Additionally, we prove that the social cost of a stable state reached by our dynamics is not much worse than an optimal state in singleton games with linear latency functions. We concentrate on the case of symmetric network congestion games, but our results do not use the network structure and continue to hold accordingly for general symmetric games. They even apply to asymmetric games when agents sample within the set of agents with the same strategy space. Finally, we discuss how the protocol can be extended such that, in the long run, dynamics converge to a pure Nash equilibrium.

References

  1. 1.
    Ackermann, H., Fischer, S., Hoefer, M., Schöngens, M.: Distributed algorithms for QoS load balancing. Distrib. Comput. 23(5–6), 321–330 (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), (2008)Google Scholar
  3. 3.
    Adolphs, C., Berenbrink, P.: Distributed selfish load balancing with weights and speeds. In: Proceedings of the 31st Symposium Principles of Distributed Computing (PODC), pp. 135–144 (2012)Google Scholar
  4. 4.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. SIAM J. Comput. 42(1), 160–177 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V., Skopalik, A.: Fast convergence to nearly optimal solutions in potential games. In: Proceedings of the 9th Conference Electronic Commerce (EC), pp. 264–273 (2008)Google Scholar
  6. 6.
    Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Hu, Z., Martin, R.: Distributed selfish load balancing. SIAM J. Comput. 37(4), 1163–1181 (2007)Google Scholar
  7. 7.
    Berenbrink, P., Friedetzky, T., Hajirasouliha, I., Hu, Z.: Convergence to equilibria in distributed, selfish reallocation processes with weighted tasks. Algorithmica 62(3–4), 767–786 (2012)Google Scholar
  8. 8.
    Berenbrink, P., Hoefer, M., Sauerwald, T.: Distributed selfish load balancing on networks. In: Proceedings of the 22nd Symposium Discrete Algorithms (SODA), pp. 1487–1497 (2011)Google Scholar
  9. 9.
    Blum, A., Even-Dar, E., Ligett, K.: Routing without regret: on convergence to Nash equilibria of regret-minimizing algorithms in routing games. Theory Comput. 6(1), 179–199 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econom. Behav. 71(2), 315–327 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy in finite congestion games. In: Proceedings of the 37th Symposium Theory of Computing (STOC), pp. 67–73 (2005)Google Scholar
  12. 12.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria in load balancing. ACM Trans. Algorithms 3(3), (2007)Google Scholar
  13. 13.
    Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: Proceedings of the 16th Symposium Discrete Algorithms (SODA), pp. 772–781 (2005)Google Scholar
  14. 14.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th Symposium Theory of Computing (STOC), pp. 604–612 (2004)Google Scholar
  15. 15.
    Fanelli, A., Flammini, M., Moscardelli, L.: The speed of convergence in congestion games under best-response dynamics. ACM Trans. Algorithms 8(3), 25 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fanelli, A., Moscardelli, L.: On best response dynamics in weighted congestion games with polynomial delays. Distrib. Comput. 24(5), 245–254 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Fanelli, A., Moscardelli, L., Skopalik, A.: On the impact of fair best response dynamics. In: Proceedings of the 37th International Symposium on Mathematics Foundations of Computer Science (MFCS), pp. 360–371 (2012)Google Scholar
  18. 18.
    Fischer, S., Mähönen, P., Schöngens, M., Vöcking, B.: Load balancing for dynamic spectrum assignment with local information for secondary users. In: Proceedings of the Symposium on Dynamic Spectrum Access Networks (DySPAN) (2008)Google Scholar
  19. 19.
    Fischer, S., Räcke, H., Vöcking, B.: Fast convergence to Wardrop equilibria by adaptive sampling mehtods. SIAM J. Comput. 39(8), 3700–3735 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Fischer, S., Vöcking, B.: Adaptive routing with stale information. Theor. Comput. Sci. 410(36), 3357–3371 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Fotakis, D., Kaporis, A., Spirakis, P.: Atomic congestion games: fast, myopic and concurrent. Theory Comput. Syst. 47(1), 38–49 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic congestion games among coalitions. ACM Trans. Algorithms 4(4), (2008)Google Scholar
  23. 23.
    Goldberg, P.: Bounds for the convergence rate of randomized local search in a multiplayer load-balancing game. In: Proceedings of the 23rd Symposium on Principles of Distributed Computing (PODC), pp. 131–140 (2004)Google Scholar
  24. 24.
    Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Inf. Process. Lett. 33, 305–308 (1990) Google Scholar
  25. 25.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar
  26. 26.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: a simple class of congestion games. In: Proceedings of the 20th Conference Artificial Intelligence (AAAI), pp. 489–494 (2005)Google Scholar
  27. 27.
    Kleinberg, R., Piliouras, G., Tardos, É.: Multiplicative updates outperform generic no-regret learning in congestion games. In: Proceedings of the 41st Symposium Theory of Computing (STOC), pp. 533–542 (2009)Google Scholar
  28. 28.
    Kleinberg, R., Piliouras, G., Tardos, É.: Load balancing without regret in the bulletin board model. Distrib. Comput. 24(1), 21–29 (2011)CrossRefMATHGoogle Scholar
  29. 29.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009)CrossRefMATHGoogle Scholar
  30. 30.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of the 41st Symposium on Theory of Computing (STOC), pp. 513–522 (2009)Google Scholar
  32. 32.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the 40th Symposium on Theory of Computing (STOC), pp. 355–364 (2008)Google Scholar
  33. 33.
    Vöcking, B.: Selfish load balancing. In: Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds.) Algorithmic Game Theory, chapter 20. Cambridge University Press, Cambridge (2007)Google Scholar
  34. 34.
    Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Heiner Ackermann
    • 1
  • Petra Berenbrink
    • 2
  • Simon Fischer
    • 3
  • Martin Hoefer
    • 4
  1. 1.Fraunhofer ITWMKaiserslauternGermany
  2. 2.Simon Fraser UniversityBurnabyCanada
  3. 3.Rapid-I GmbHDortmundGermany
  4. 4.Max-Planck-Institut für InformatikSaarland UniversitySaarbrückenGermany

Personalised recommendations