Distributed Computing

, Volume 28, Issue 3, pp 189–200 | Cite as

Allowing each node to communicate only once in a distributed system: shared whiteboard models

  • Florent Becker
  • Adrian Kosowski
  • Martin Matamala
  • Nicolas Nisse
  • Ivan Rapaport
  • Karol Suchan
  • Ioan Todinca
Article

Abstract

In this paper we study distributed algorithms on massive graphs where links represent a particular relationship between nodes (for instance, nodes may represent phone numbers and links may indicate telephone calls). Since such graphs are massive they need to be processed in a distributed way. When computing graph-theoretic properties, nodes become natural units for distributed computation. Links do not necessarily represent communication channels between the computing units and therefore do not restrict the communication flow. Our goal is to model and analyze the computational power of such distributed systems where one computing unit is assigned to each node. Communication takes place on a whiteboard where each node is allowed to write at most one message. Every node can read the contents of the whiteboard and, when activated, can write one small message based on its local knowledge. When the protocol terminates its output is computed from the final contents of the whiteboard. We describe four synchronization models for accessing the whiteboard. We show that message size and synchronization power constitute two orthogonal hierarchies for these systems. We exhibit problems that separate these models, i.e., that can be solved in one model but not in a weaker one, even with increased message size. These problems are related to maximal independent set and connectivity. We also exhibit problems that require a given message size independently of the synchronization model.

Keywords

Distributed computing Local computation Graph properties Bounded communication 

References

  1. 1.
    Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous messages. SIAM J. Comput. 33, 137–166 (2004) Google Scholar
  2. 2.
    Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding a referee to an interconnection network: What can(not) be computed in one round. In: Parallel and Distributed Processing Symposium, International, pp. 508–514. IEEE Computer Society (2011)Google Scholar
  3. 3.
    Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC ’83, pp. 94–99. ACM (1983)Google Scholar
  4. 4.
    Feldman, J., Muthukrishnan, S.M., Sidiropoulos, A., Stein, C., Svitkina, Z.: On distributing symmetric streaming computations. ACM Trans. Algorithms 6, 66:1–66:19 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Grumbach, S., Wu, Z.: Logical locality entails frugal distributed computation over graphs. In: Proceedings of 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), Lecture Notes in Computer Science, 5911, pp. 154–165 (2009)Google Scholar
  7. 7.
    Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica 4(4), 307–316 (1984)Google Scholar
  8. 8.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 300–309. ACM (2004)Google Scholar
  9. 9.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM Monographs on Discrete Mathematics and Applications (2000)Google Scholar
  12. 12.
    Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc. 95, 261–265 (1984)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Thomason, A.: The extremal function for complete minors. J. Comb. Theory. Ser. B 81(2), 318–338 (2001)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Wright, E.: Equal sums of like powers. Bull. Amer. Math. Soc. 8, 755–757 (1948)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Florent Becker
    • 1
  • Adrian Kosowski
    • 2
  • Martin Matamala
    • 3
  • Nicolas Nisse
    • 4
  • Ivan Rapaport
    • 3
  • Karol Suchan
    • 5
    • 6
  • Ioan Todinca
    • 1
  1. 1.LIFOUniversité d’OrléansOrléansFrance
  2. 2.Inria Paris - LIAFAUniversité Paris DiderotParisFrance
  3. 3.DIM-CMM (UMI 2807 CNRS)Universidad de ChileSantiagoChile
  4. 4.CNRS, I3S, Sophia-AntipolisInria & Univ. Nice Sophia-AntipolisNiceFrance
  5. 5.Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
  6. 6.Faculty of Applied MathematicsAGH - University of Science and TechnologyKrakówPoland

Personalised recommendations