Advertisement

Distributed Computing

, Volume 27, Issue 2, pp 95–109 | Cite as

Time versus space trade-offs for rendezvous in trees

  • Jurek Czyzowicz
  • Adrian Kosowski
  • Andrzej Pelc
Article

Abstract

Two identical (anonymous) mobile agents start from arbitrary nodes of an unknown tree and have to meet at some node. Agents move in synchronous rounds: in each round an agent can either stay at the current node or move to one of its neighbors. We consider deterministic algorithms for this rendezvous task. The main result of this paper is a tight trade-off between the optimal time of completing rendezvous and the size of memory of the agents. For agents with \(k\) memory bits, we show that optimal rendezvous time is \(\Theta (n+n^2/k)\) in \(n\)-node trees. More precisely, if \(k \ge c\log n\), for some constant \(c\), we design agents accomplishing rendezvous in arbitrary trees of size \(n\) (unknown to the agents) in time \(O(n+n^2/k)\), starting with arbitrary delay. We also show that no pair of agents can accomplish rendezvous in time \(o(n+n^2/k)\), even in the class of lines of known length and even with simultaneous start. Finally, we prove that at least logarithmic memory is necessary for rendezvous, even for agents starting simultaneously in a \(n\)-node line.

Keywords

Rendezvous Anonymous agents Time Memory space 

References

  1. 1.
    Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683 (1995)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Alpern, S.: Rendezvous search on labelled networks. Nav. Res. Logist. 49, 256–274 (2002)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Int. Series in Operations Research and Management Science. Kluwer, Dordrecht (2002)Google Scholar
  4. 4.
    Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. J. Appl. Probab. 36, 223–231 (1999)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ambühl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), article 17 (2011)Google Scholar
  6. 6.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. J. Appl. Probab. 28, 839–851 (1990)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proceedings 14th Annual ACM Symposium on Computational Geometry, pp. 365–373 (1998)Google Scholar
  8. 8.
    Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Oper. Res. 49, 107–118 (2001)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Baba, D., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Space-optimal rendezvous of mobile agents in asynchronous trees. In: Proceedings 17th International Colloquium on Structural Information and Comm. Complexity, (SIROCCO 2010), LNCS 6058, pp. 86–100 (2010)Google Scholar
  10. 10.
    Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. Control Optim. 36, 1880–1889 (1998)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Nav. Res. Logist. 48, 722–731 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Proceedings 30th International Colloquium on Automata, Languages and Programming (ICALP 2003), pp. 1181–1196. (2003)Google Scholar
  13. 13.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25, 165–178 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8, article 37 (2012)Google Scholar
  15. 15.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355, 315–326 (2006)CrossRefMATHGoogle Scholar
  16. 16.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4, 363–381 (1983)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Elouasbi, S., Pelc, A.: Time of anonymous rendezvous in trees: Determinism vs. randomization. In: Proceedings 19th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2012), LNCS 7355, pp. 291–302 (2012)Google Scholar
  19. 19.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Proceedings 22nd International Symposium on Distributed Computing (DISC 2008), LNCS 5218, pp. 242–256 (2008)Google Scholar
  21. 21.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. In: Proceedings 22nd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2010), pp. 224–232 (2010)Google Scholar
  22. 22.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. ACM Trans. Algorithms 9(2), article 17 (2013)Google Scholar
  23. 23.
    Gal, S.: Rendezvous search on the line. Oper. Res. 47, 974–976 (1999)CrossRefMATHGoogle Scholar
  24. 24.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proceedings 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131. (1990)Google Scholar
  25. 25.
    Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theor. Comput. Sci. 399, 141–156 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Kranakis, E., Krizanc, D., Morin, P.: Randomized rendezvous with limited memory. ACM Trans. Algorithms 7(3), article 34 (2011)Google Scholar
  27. 27.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proceedings 23rd International Conference on Distributed Computing Systems (ICDCS 2003), IEEE, pp. 592–599 (2003)Google Scholar
  28. 28.
    Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. Control Optim. 34, 1650–1665 (1996)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Miller, G.L., Reif, J.H.: Parallel tree contraction part 1: Fundamentals. In: Micali, S. (ed.) Randomness and Computation, Vol. 5, pp. 47–72. JAI Press, Greenwich, Connecticut (1989) Google Scholar
  30. 30.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59, 331–347 (2012)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Roh, K., Crochemore, M., Iliopoulos, C.S., Park, K.: External memory algorithms for string problems. Fundam. Inform. 84, 17–32 (2008)MATHMathSciNetGoogle Scholar
  32. 32.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proceedings 18th ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)Google Scholar
  33. 33.
    Thomas, L.: Finding your kids when they are lost. J. Oper. Res. Soc. 43, 637–639 (1992)MATHGoogle Scholar
  34. 34.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Proceedings International Colloquium on Automata, Languages, and Programming (ICALP 1996), LNCS 1099, pp. 610–621 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Adrian Kosowski
    • 2
  • Andrzej Pelc
    • 1
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.CEPAGE ProjectInria Bordeaux Sud-OuestTalenceFrance

Personalised recommendations