Distributed Computing

, Volume 27, Issue 6, pp 435–443 | Cite as

No sublogarithmic-time approximation scheme for bipartite vertex cover



König’s theorem states that on bipartite graphs the size of a maximum matching equals the size of a minimum vertex cover. It is known from prior work that for every \(\epsilon > 0\) there exists a constant-time distributed algorithm that finds a \((1+\epsilon )\)-approximation of a maximum matching on bounded-degree graphs. In this work, we show—somewhat surprisingly—that no sublogarithmic-time approximation scheme exists for the dual problem: there is a constant \(\delta > 0\) so that no randomised distributed algorithm with running time \(o(\log n)\) can find a \((1+\delta )\)-approximation of a minimum vertex cover on 2-coloured graphs of maximum degree 3. In fact, a simple application of the Linial–Saks (Combinatorica 13:441–454, 1993) decomposition demonstrates that this run-time lower bound is tight. Our lower-bound construction is simple and, to some extent, independent of previous techniques. Along the way we prove that a certain cut minimisation problem, which might be of independent interest, is hard to approximate locally on expander graphs.


Distributed graph algorithms Local approximation Lower bounds Vertex cover 


  1. 1.
    Åstrand, M., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: Local algorithms in (weakly) coloured graphs (2010). Manuscript, arXiv:1002.0125 [cs.DC]Google Scholar
  2. 2.
    Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Proc. 22nd Symposium on Distributed Computing (DISC 2008), LNCS, vol. 5218, pp. 78–92. Springer, Berlin (2008). doi:10.1007/978-3-540-87779-0_6
  3. 3.
    Diestel, R.: Graph Theory, 3rd edn. Springer, Berlin (2005). http://diestel-graph-theory.com/
  4. 4.
    Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In: Proc. 31st Symposium on Principles of Distributed Computing (PODC 2012), pp. 175–184. ACM Press, New York (2012). doi:10.1145/2332432.2332465
  5. 5.
    Göös, M., Suomela, J.: No sublogarithmic-time approximation scheme for bipartite vertex cover. In: Proc. 26th Symposium on Distributed Computing (DISC 2012), LNCS, vol. 7611, pp. 181–194. Springer, Berlin (2012). doi:10.1007/978-3-642-33651-5_13
  6. 6.
    Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for approximation and testing. In: Proc. 50th Symposium on Foundations of Computer Science (FOCS 2009), pp. 22–31. IEEE Computer Society Press, Los Alamitos (2009). doi:10.1109/FOCS.2009.77
  7. 7.
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006). doi:10.1090/S0273-0979-06-01126-8 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Janson, S.: Large deviations for sums of partly dependent random variables. Random Struct. Algor. 24(3), 234–248 (2004). doi:10.1002/rsa.v24:3 CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. 23rd Symposium on Principles of Distributed Computing (PODC 2004), pp. 300–309. ACM Press, New York (2004). doi:10.1145/1011767.1011811
  10. 10.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. 17th Symposium on Discrete Algorithms (SODA 2006), pp. 980–989. ACM Press, New York (2006). doi:10.1145/1109557.1109666
  11. 11.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper bounds (2010). Manuscript, arXiv:1011.5470 [cs.DC]Google Scholar
  12. 12.
    Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit. In: Proc. 22nd Symposium on Distributed Computing (DISC 2008), LNCS, vol. 5218, pp. 394–407. Springer, Berlin (2008). doi:10.1007/978-3-540-87779-0_27
  13. 13.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992). doi:10.1137/0221015 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Linial, N., Saks, M.: Low diameter graph decompositions. Combinatorica 13, 441–454 (1993). doi:10.1007/BF01303516 CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Morgenstern, M.: Existence and explicit constructions of \(q + 1\) regular Ramanujan graphs for every prime power \(q\). J. Comb. Theory Ser. B 62(1), 44–62 (1994). doi: 10.1006/jctb.1994.1054 CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995). doi:10.1137/S0097539793254571 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: Proc. 49th Symposium on Foundations of Computer Science (FOCS 2008), pp. 327–336. IEEE Computer Society Press, Los Alamitos (2008). doi:10.1109/FOCS.2008.81
  18. 18.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, Mineola (1998)MATHGoogle Scholar
  19. 19.
    Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–196 (2007). doi:10.1016/j.tcs.2007.04.040 CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)Google Scholar
  21. 21.
    Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–40 (2013). doi:10.1145/2431211.2431223. http://www.cs.helsinki.fi/local-survey/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Helsinki Institute for Information Technology HIITDepartment of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations