Advertisement

Distributed Computing

, Volume 25, Issue 1, pp 5–33 | Cite as

A study on shuffle, stopwatches and independently evolving clocks

  • Cătălin Dima
  • Ruggero Lanotte
Article

Abstract

We show that stopwatch automata are equivalent with timed shuffle expressions, an extension of timed regular expressions with the shuffle operation. Since the emptiness problem is undecidable for stopwatch automata, and hence also for timed shuffle expressions, we introduce a decidable subclass of stopwatch automata called partitioned stopwatch automata. We give for this class an equivalent subclass of timed shuffle expressions and investigate closure properties by showing that partitioned stopwatch automata are closed under union, concatenation, star, shuffle and renaming, but not under intersection. We also show that partitioned stopwatch automata are equivalent with distributed time-asynchronous automata, which are asynchronous compositions of timed automata in which time may evolve independently.

Keywords

Regular Expression Discrete Transition Target Component Hybrid Automaton Source Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdeddaïm Y., Asarin E., Maler O.: Scheduling with timed automata. Theor. Comput. Sci. 354(2), 272–300 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar K.: Distributed timed automata with independently evolving clocks. In: Proceedings of the 19th International Conference on Concurrency Theory (CONCUR 2008), volume 5201 of Lecture Notes in Computer Science, pp. 82–97. Springer, Berlin (2008)Google Scholar
  3. 3.
    Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Proceedings of the 12th International Symposium in Logic in Computer System (LICS’97), pp. 160–171. IEEE Computer Society Press, Silver Spring (1997)Google Scholar
  4. 4.
    Asarin E., Caspi P., Maler O.: Timed regular expressions. J. Assoc. Comput. Mach. 49, 172–206 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alur R., Dill D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Abdeddaïm, Y., Maler, O.: Job-shop scheduling using timed automata. In: Proceedings of the 13th International Conference on Computer-Aided Verification (CAV’01), volume 2102 of Lecture Notes in Computer Science, pp. 478–492. Springer, Berlin (2001)Google Scholar
  7. 7.
    Abdeddaïm, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch automata. In: Proceedings of the 8th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02), volume 2280 of Lecture Notes in Computer Science, pp. 113–126. Springer, Berlin (2002)Google Scholar
  8. 8.
    Baier C., Katoen J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  9. 9.
    Bérard, B., Haddad, S.: Interrupt timed automata. In: Proceedings of FoSSaCS’09, volume 5504 of Lecture Notes in Computer Science, pp. 197–211. Springer, Berlin (2009)Google Scholar
  10. 10.
    Bouyer, P., Petit, A.: Decomposition and composition of timed automata. In: Proceedings of ICALP’99, volume 1644 of LNCS, pp. 210–219 (1999)Google Scholar
  11. 11.
    Bouyer P., Dufourd C., Fleury E., Petit A.: Updatable timed automata. Theor. Comput. Sci. 321(2–3), 291–345 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bouyer P., Petit A.: A kleene/büchi-like theorem for clock languages. J. Autom. Lang. Comb. 7(2), 167–186 (2001)MathSciNetGoogle Scholar
  13. 13.
    Bouyer P., Petit A., Thérien D.: An algebraic approach to data languages and timed languages. Inf. Comput. 182(2), 137–162 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Clarke E., Grumberg O., Peled D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  15. 15.
    Dima, C.: Kleene theorems for event-clock automata. In: Proceedings of FCT’99, volume 1684 of LNCS, pp. 215–225 (1999)Google Scholar
  16. 16.
    Dima C.: Real-time automata. J. Autom. Lang. Comb. 6, 3–23 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dima, C.: A nonarchimedian discretization for timed languages. In: Proceedings of the First International Workshop on Formal Modelling and Analysis of Timed Systems (FORMATS’03), volume 2791 of Lecture Notes in Computer Science, pp. 161–181. Springer, Berlin (2003)Google Scholar
  18. 18.
    Dima, C.: Timed shuffle expressions. In: Proceedings of the 16th International Conference on Concurrency Theory (CONCUR’05), volume 3653 of Lecture Notes in Computer Science, pp. 95–109. Springer, Berlin (2005)Google Scholar
  19. 19.
    Dima, C.: Positive and negative results on the decidability of the model-checking problem for an epistemic extension of timed ctl. In: Proceedings of TIME’09, pp. 29–36. IEEE Computer Society, Silver Spring (2009)Google Scholar
  20. 20.
    Dima, C., Lanotte, R.: Distributed time-asynchronous automata. In: Proceedings of the 4th International Colloquium on Theoretical Aspects of Computing (ICTAC 2007), volume 4711 of Lecture Notes in Computer Science, pp. 185–200. Springer, Berlin (2007)Google Scholar
  21. 21.
    Demichelis, F., Zielonka, W.: Controlled timed automata. In: Proceedings of CONCUR’98, volume 1466 of Lecture Notes in Computer Science, pp. 455–469. Springer, Berlin (1998)Google Scholar
  22. 22.
    Fersman E., Krcál P., Pettersson P., Yi W.: Task automata: schedulability, decidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)zbMATHCrossRefGoogle Scholar
  23. 23.
    Fersman E., Mokrushin L., Pettersson P., Yi W.: Schedulability analysis of fixed-priority systems using timed automata. Theor. Comput. Sci. 354(2), 301–317 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Henzinger T.A., Kopke P.W., Puri A., Varaiya P.: What’s decidable about hybrid automata. J. Comput. Syst. Sci. 57, 94–124 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Proceedings of 25th International Conference on Automata, Logics and Programming (ICALP’98), volume 1443 of Lecture Notes in Computer Science, pp. 580–591. Springer, Berlin (1998)Google Scholar
  26. 26.
    Krishnan P.: Distributed timed automata. Electron. Notes Theor. Comput. Sci. 28, 5–21 (2000)CrossRefGoogle Scholar
  27. 27.
    Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: Proceedings of the 18th International Symposium in Logic in Computer System (LICS’03), pp. 198–207. IEEE Computer Society Press, Silver Spring, (2003)Google Scholar
  28. 28.
    Pandya, P.K., Hung, D.V.: Duration calculus of weakly monotonic time. In: Proceedings of FTRTFT’98, volume 1486 of Lecture Notes in Computer Science, pp. 55–64. Springer, Berlin (1998)Google Scholar
  29. 29.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Proceedings of FTRTFT’94, volume 863 of LNCS, pp. 694–715 (1994)Google Scholar
  30. 30.
    Wozna, B., Lomuscio, A.: A logic for knowledge, correctness, and real time. In: Proceedings of CLIMA V, volume 3487 of Lecture Notes in Computer Science, pp. 1–15. Springer, Berlin (2005)Google Scholar
  31. 31.
    Yovine, S. Model-checking timed automata. In: Lectures on Embedded Systems, volume 1494 of Lecture Notes in Computer Science, pp. 114–152. Springer, Berlin (1998)Google Scholar
  32. 32.
    Zielonka W.: Notes on finite asynchronous automata. Inf. Théor. Appl. 21(2), 99–135 (1987)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.LACL, Université Paris-Est CréteilCréteil CedexFrance
  2. 2.Università dell’InsubriaComoItaly

Personalised recommendations