Distributed Computing

, Volume 25, Issue 2, pp 165–178 | Cite as

How to meet when you forget: log-space rendezvous in arbitrary graphs

Article

Abstract

Two identical (anonymous) mobile agents start from arbitrary nodes in an a priori unknown graph and move synchronously from node to node with the goal of meeting. This rendezvous problem has been thoroughly studied, both for anonymous and for labeled agents, along with another basic task, that of exploring graphs by mobile agents. The rendezvous problem is known to be not easier than graph exploration. A well-known recent result on exploration, due to Reingold, states that deterministic exploration of arbitrary graphs can be performed in log-space, i.e., using an agent equipped with O(log n) bits of memory, where n is the size of the graph. In this paper we study the size of memory of mobile agents that permits us to solve the rendezvous problem deterministically. Our main result establishes the minimum size of the memory of anonymous agents that guarantees deterministic rendezvous when it is feasible. We show that this minimum size is Θ(log n), where n is the size of the graph, regardless of the delay between the starting times of the agents. More precisely, we construct identical agents equipped with Θ(log n) memory bits that solve the rendezvous problem in all graphs with at most n nodes, if they start with any delay τ, and we prove a matching lower bound Ω(log n) on the number of memory bits needed to accomplish rendezvous, even for simultaneous start. In fact, this lower bound is achieved already on the class of rings. This shows a significant contrast between rendezvous and exploration: e.g., while exploration of rings (without stopping) can be done using constant memory, rendezvous, even with simultaneous start, requires logarithmic memory. As a by-product of our techniques introduced to obtain log-space rendezvous we get the first algorithm to find a quotient graph of a given unlabeled graph in polynomial time, by means of a mobile agent moving around the graph.

Keywords

Rendezvous Graph exploration Compact data structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpern S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683 (1995)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alpern S.: Rendezvous search on labelled networks. Nav. Res. Logist. 49, 256–274 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alpern J., Baston V., Essegaier S.: Rendezvous search on a graph. J. Appl. Probab. 36, 223–231 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. In: International Series in Operations Research and Management Science. Kluwer Academic Publisher, Dordrecht (2002)Google Scholar
  5. 5.
    Ambuhl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), paper no. 17 (2011)Google Scholar
  6. 6.
    Anderson E., Weber R.: The rendezvous problem on discrete locations. J. Appl. Probab. 28, 839–851 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proceedings of the 14th Annual ACM Symposium on Computational Geometry (1998)Google Scholar
  8. 8.
    Anderson E., Fekete S.: Two-dimensional rendezvous search. Oper. Res. 49, 107–118 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Symposium on the Theory of Computing (STOC), pp. 82–93 (1980)Google Scholar
  10. 10.
    Attiya H., Snir M., Warmuth M.: Computing on an anonymous ring. J. ACM 35, 845–875 (1988)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Baston V., Gal S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. Control Optim. 36, 1880–1889 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Baston V., Gal S.: Rendezvous search when marks are left at the starting points. Nav. Res. Logist. 48, 722–731 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proceedings of the 18th ACM Symposium on Principles of Distributed Computing (PODC), pp. 181–188 (1999)Google Scholar
  14. 14.
    Cook S.A., Rackoff C.: Space lower bounds for maze threadability on restricted machines. SIAM J. Comput. 9, 636–652 (1980)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    De Marco G., Gargano L., Kranakis E., Krizanc D., Pelc A., Vaccaro U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355, 315–326 (2006)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dessmark A., Fraigniaud P., Kowalski D., Pelc A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Diks K., Fraigniaud P., Kranakis E., Pelc A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in a ring. In: Proceedings of the 6th Latin American Symposium on Theoretical Informatics (LATIN), pp. 599–608 (2004)Google Scholar
  19. 19.
    Flocchini P., Prencipe G., Santoro N., Widmayer P.: Gathering of asynchronous oblivious robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Fraigniaud, P., Gavoille, C.: Routing in trees. In: Proceedings of the 28th International Colloquium on Automata, Languages and Programming (ICALP), pp. 757–772 (2001)Google Scholar
  21. 21.
    Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pp. 65–75 (2002)Google Scholar
  22. 22.
    Fraigniaud, P., Ilcinkas, D.: Digraphs exploration with little memory. In: Proceedings of the 21st Symposium on Theoretical Aspects of Computer Science (STACS), pp. 246–257 (2004)Google Scholar
  23. 23.
    Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Proceedings of the 22nd International Symposium on Distributed Computing (DISC), pp. 242–256 (2008)Google Scholar
  24. 24.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. In: Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2010)Google Scholar
  25. 25.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. ArXiv: 1102.0467v1 (2011)Google Scholar
  26. 26.
    Gal S.: Rendezvous search on the line. Oper. Res. 47, 974–976 (1999)MATHCrossRefGoogle Scholar
  27. 27.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 119–131 (1990)Google Scholar
  28. 28.
    Kouckỳ M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65, 717–726 (2002)CrossRefGoogle Scholar
  29. 29.
    Kowalski D., Malinowski A.: How to meet in anonymous network. Theor. Comput. Sci. 399(1–2), 141–156 (2008)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Kranakis E., Krizanc D., van der Berg J.: Computing Boolean functions on anonymous networks. Inf. Comput. 114, 214–236 (1994)MATHCrossRefGoogle Scholar
  31. 31.
    Kranakis, E., Krizanc, D., Morin, P.: Randomized rendez-vous with limited memory. In: Proceedings of the 8th Latin American Theoretical Informatics (LATIN), pp. 605–616 (2008)Google Scholar
  32. 32.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS), pp. 592–599 (2003)Google Scholar
  33. 33.
    Lim W., Alpern S.: Minimax rendezvous on the line. SIAM J. Control Optim. 34, 1650–1665 (1996)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Norris N.: Universal covers of graphs: isomorphism to depth N-1 implies isomorphism to all depths. Discret. Appl. Math. 56, 61–74 (1995)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55, 1–24 (2008)Google Scholar
  36. 36.
    Schelling T.: The Strategy of Conflict. Oxford University Press, Oxford (1960)Google Scholar
  37. 37.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proceedings of the 18th ACM-SIAM symposium on Discrete algorithms (SODA), pp. 599–608 (2007)Google Scholar
  38. 38.
    Thomas L.: Finding your kids when they are lost. J. Oper. Res. Soc. 43, 637–639 (1992)MATHGoogle Scholar
  39. 39.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 1–10 (2001)Google Scholar
  40. 40.
    Yamashita M., Kameda T.: Computing on anonymous networks: part I-characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89 (1996)CrossRefGoogle Scholar
  41. 41.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP), pp. 610–621 (1996)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Adrian Kosowski
    • 2
    • 3
  • Andrzej Pelc
    • 1
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.INRIA Bordeaux Sud-Ouest, CEPAGE ProjectTalenceFrance
  3. 3.Department of Algorithms and System ModelingGdańsk University of TechnologyGdańskPoland

Personalised recommendations