Advertisement

Distributed Computing

, 24:91 | Cite as

Derandomizing random walks in undirected graphs using locally fair exploration strategies

  • Colin Cooper
  • David Ilcinkas
  • Ralf KlasingEmail author
  • Adrian Kosowski
Article

Abstract

We consider the problem of exploring an anonymous undirected graph using an oblivious robot. The studied exploration strategies are designed so that the next edge in the robot’s walk is chosen using only local information, and so that some local equity (fairness) criterion is satisfied for the adjacent undirected edges. Such strategies can be seen as an attempt to derandomize random walks, and are natural counterparts for undirected graphs of the rotor-router model for symmetric directed graphs. The first of the studied strategies, known as Oldest-First, always chooses the neighboring edge for which the most time has elapsed since its last traversal. Unlike in the case of symmetric directed graphs, we show that such a strategy in some cases leads to exponential cover time. We then consider another strategy called Least-Used-First which always uses adjacent edges which have been traversed the smallest number of times. We show that any Least-Used-First exploration covers a graph G = (V, E) of diameter D within time O(D|E|), and in the long run traverses all edges of G with the same frequency.

Keywords

Graph exploration Random walk Rotor-router model Local knowledge Deterministic strategy 

References

  1. 1.
    Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. http://stat-www.berkeley.edu/users/aldous/RWG/book.html (2001)
  2. 2.
    Aleliunas, R., Karp, R.M., Lipton R.J., Lovász, L., Rackoff, C.: Random walks, universal sequences and the complexity of maze problems. In: Proceedings of 20th Annual IEEE Symposium on the Foundations of Computer Science (FOCS’79), pp. 218–223 (1979)Google Scholar
  3. 3.
    Ambühl C., Gasieniec L., Pelc A., Radzik T., Zhang X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), 17 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bampas, E., Gasieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Proceedings of 23rd International Symposium on Distributed Computing (DISC’09), LNCS 5805, pp. 423–435 (2009)Google Scholar
  5. 5.
    Bampas, E., Gasieniec, L., Klasing, R., Kosowski, A., Radzik, T.: Robustness of the rotor-router mechanism. In: Proceedings of 13th International Conference on Principles of Distributed Systems (OPODIS’09), LNCS 5923, pp. 345–358 (2009)Google Scholar
  6. 6.
    Bender M.A., Fernández A., Ron D., Sahai A., Vadhan S.P.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bhatt S.N., Even S., Greenberg D.S., Tayar R.: Traversing directed eulerian mazes. J. Graph Algorithms Appl. 6(2), 157–173 (2002)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cooper J., Doerr B., Friedrich T., Spencer J.: Deterministic random walks on regular trees. Random Struct. Algorithms 37(3), 353–366 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Deng X., Papadimitriou C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ding, J., Lee, J.R., Peres, Y.: Cover times, blanket times, and majorizing measures. In: Proceedings of 43rd ACM Symposium on Theory of Computing (STOC’11), pp. 61–70 (2011)Google Scholar
  11. 11.
    Doerr B., Friedrich T.: Deterministic random walks on the two-dimensional grid. Comb. Probab. Comput. 18, 123–144 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fraigniaud P., Ilcinkas D., Peer G., Pelc A., Peleg D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Friedrich, T., Sauerwald, T.: The cover time of deterministic random Walks. In: Proceedings of 16th Annual International Conference on Computing and Combinatorics (COCOON’10), LNCS 6196, pp. 130–139 (2010)Google Scholar
  14. 14.
    Hemmerling, A.: Labyrinth problems: Labyrinth-searching abilities of automata. Teubner-Texte zur Mathematik, vol. 114 (1989)Google Scholar
  15. 15.
    Ikeda S., Kubo I., Yamashita M.: The hitting and cover times of random walks on finite graphs using local degree information. Theor. Comput. Sci. 410(1), 94–100 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kahn, J., Kim, J.H., Lovász, L., Vu, V.H.: The cover time, the blanket time, and the Matthews bound. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science (FOCS’00), IEEE, pp. 467–475 (2000)Google Scholar
  17. 17.
    Koenig, S.: Complexity of edge counting. In: Goal-Directed Acting with Incomplete Information. Technical Report CMU-CS-97-199, Carnegie Mellon University (1997)Google Scholar
  18. 18.
    Koenig, S., Simmons, R.G.: Easy and hard testbeds for real-time search algorithms. In: Proceedings of National Conference on Artificial Intelligence, pp. 279–285 (1996)Google Scholar
  19. 19.
    Koucký M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65(4), 717–726 (2002)zbMATHCrossRefGoogle Scholar
  20. 20.
    Lovász L.: Random walks on graphs: a survey. Bolyai Soc. Math. Stud. 2, 353–397 (1996) BudapestGoogle Scholar
  21. 21.
    Malpani N., Chen Y., Vaidya N.H., Welch J.L.: Distributed token circulation in mobile ad hoc networks. IEEE Trans. Mobile Comput. 4(2), 154–165 (2005)CrossRefGoogle Scholar
  22. 22.
    Reingold, O.: Undirected ST-connectivity in log-space. In: Proceedings of 37th Annual ACM Symposium on Theory of Computing (STOC’05), pp. 376–385 (2005)Google Scholar
  23. 23.
    Saks, M.E.: Randomization and derandomization in space-bounded computation. In: Proceedings of 11th Annual IEEE Conference on Computational Complexity, pp. 128–149 (1996)Google Scholar
  24. 24.
    Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Smell as a computational resource—a lesson we can learn from the ants. In: Proceedings of Fourth Israeli Symposium on Theory of Computing and Systems (ISTCS’96), pp. 219–230 (1996)Google Scholar
  25. 25.
    Wagner I.A., Lindenbaum M., Bruckstein A.M.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999)CrossRefGoogle Scholar
  26. 26.
    Winkler P., Zuckerman D.: Multiple cover time. Random Struct. Algorithms 9(4), 403–411 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Yanovski V., Wagner I.A., Bruckstein A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Colin Cooper
    • 1
  • David Ilcinkas
    • 2
  • Ralf Klasing
    • 2
    Email author
  • Adrian Kosowski
    • 3
  1. 1.Department of Computer ScienceKing’s College LondonLondonUK
  2. 2.LaBRI - Université de Bordeaux - CNRSTalenceFrance
  3. 3.INRIA Bordeaux Sud-OuestTalenceFrance

Personalised recommendations