Advertisement

Distributed Computing

, Volume 24, Issue 3–4, pp 137–147 | Cite as

The disagreement power of an adversary

  • Carole Delporte-Gallet
  • Hugues Fauconnier
  • Rachid Guerraoui
  • Andreas Tielmann
Article

Abstract

At the heart of distributed computing lies the fundamental result that the level of agreement that can be obtained in an asynchronous shared memory model where t processes can crash is exactly t + 1. In other words, an adversary that can crash any subset of size at most t can prevent the processes from agreeing on t values. But what about all the other \({2^{2^n - 1} - (n+1)}\) adversaries that are not uniform in this sense and might crash certain combination of processes and not others? This paper presents a precise way to classify all adversaries. We introduce the notion of disagreement power: the biggest integer k for which the adversary can prevent processes from agreeing on k values. We show how to compute the disagreement power of an adversary and derive n equivalence classes of adversaries.

Keywords

Correct Process Failure Detector Disagreement Power Faulty Process Byzantine Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., Shavit N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)zbMATHCrossRefGoogle Scholar
  2. 2.
    Ashwinkumar, B.V., Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: On tradeoff between network connectivity, phase complexity and communication complexity of reliable communication tolerating mixed adversary. In: PODC, pp. 115–124 (2008)Google Scholar
  3. 3.
    Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. In: STOC, pp. 91–100 (1993)Google Scholar
  4. 4.
    Borowsky E., Gafni E., Lynch N.A., Rajsbaum S.: The BG distributed simulation algorithm. Distrib. Comput. 14(3), 127–146 (2001)CrossRefGoogle Scholar
  5. 5.
    Chaudhuri S.: More choices allow more faults: set consensus problems in totally asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chandra T.D., Hadzilacos V., Jayanti P., Toueg S.: Generalized irreducibility of consensus and the equivalence of t-resilient and wait-free implementations of consensus. SIAM J. Comput. 34(2), 333–357 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chandra T.D., Hadzilacos V., Toueg S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chandra T.D., Toueg S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fischer M.J., Lynch N.A., Paterson M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fitzi, M., Maurer, U.M.: Efficient byzantine agreement secure against general adversaries. In: DISC, pp. 134–148 (1998)Google Scholar
  11. 11.
    Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks (extended abstract). In: STOC, pp. 589–598 (1997)Google Scholar
  12. 12.
    Herlihy M., Shavit N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Junqueira F., Marzullo K.: A framework for the design of dependent-failure algorithms. Concurr. Comput. Pract. Exp. 19(17), 2255–2269 (2007)CrossRefGoogle Scholar
  14. 14.
    Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve consensus in asynchronous shared-memory systems (extended abstract). In: WDAG, pp. 280–295 (1994)Google Scholar
  15. 15.
    Saks M.E., Zaharoglou F.: Wait-free k-set agreement is impossible: the topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by asynchronous hardware (detailed abstract). In: FOCS, pp. 233–243 IEEE (1986)Google Scholar
  17. 17.
    Zielinski P.: Anti-Omega: the weakest failure detector for set agreement. Distrib Comput 22(5–6), 335–348 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Carole Delporte-Gallet
    • 1
  • Hugues Fauconnier
    • 1
  • Rachid Guerraoui
    • 2
  • Andreas Tielmann
    • 1
  1. 1.LIAFA, Université Paris DiderotParisFrance
  2. 2.School of Computer and Communication Sciences, EPFLLausanneSwitzerland

Personalised recommendations