Distributed Computing

, Volume 24, Issue 3–4, pp 187–206

The abstract MAC layer

Article

Abstract

A diversity of possible communication assumptions complicates the study of algorithms and lower bounds for radio networks. We address this problem by defining an abstract MAC layer. This service provides reliable local broadcast communication, with timing guarantees stated in terms of a collection of abstract delay functions applied to the relevant contention. Algorithm designers can analyze their algorithms in terms of these functions, independently of specific channel behavior. Concrete implementations of the abstract MAC layer over basic radio network models generate concrete definitions for these delay functions, automatically adapting bounds proven for the abstract service to bounds for the specific radio network under consideration. To illustrate this approach, we use the abstract MAC layer to study the new problem of Multi-Message Broadcast, a generalization of standard single-message broadcast in which multiple messages can originate at different times and locations in the network. We present and analyze two algorithms for Multi-Message Broadcast in static networks: a simple greedy algorithm and one that uses regional leaders. We then indicate how these results can be extended to mobile networks.

Keywords

Wireless networks Abstraction Medium access control Broadcast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    80211 I: Wireless LAN MAC and Physical Layer Specifications June (1999)Google Scholar
  2. 2.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: On the complexity of radio communication. In: The Proceedings of the Symposium on Theory of Computing (1989)Google Scholar
  3. 3.
    Bar-Yehuda R., Goldreich O., Itai A.: Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection. Distrib. Comput. 5, 67–71 (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Bar-Yehuda R., Goldreich O., Itai A.: On the time-complexity of broadcast in multi-hop radio networks: an exponential gap between determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chlamtac I., Kutten S.: On broadcasting in radio networks: problem analysis and protocol design. IEEE Trans. Commun. 33(12), 1240–1246 (1985)MATHCrossRefGoogle Scholar
  6. 6.
    Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. In: The Proceedings of the Symposium on Discrete Algorithms (2000)Google Scholar
  7. 7.
    Chlebus B.S., Gasieniec L., Gibbons A., Pelc A., Rytter W.: Deterministic broadcasting in ad hoc radio networks. Distrib. Comput. 15(1), 27–38 (2002)CrossRefGoogle Scholar
  8. 8.
    Chockler G., Demirbas M., Gilbert S., Lynch N., Newport C., Nolte T.: Consensus and collision detectors in radio networks. Distrib. Comput. 21, 55–84 (2008)CrossRefGoogle Scholar
  9. 9.
    Clementi A., Monti A., Silvestri R.: Round Robin is optimal for fault-tolerant broadcasting on wireless networks. J. Parallel Distrib. Comput. 64(1), 89–96 (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Cornejo, A., Lynch, N., Viqar, S., Welch, J.: A neighbor discovery service using an abstract MAC layer. In: The Proceedings of the Allerton Conference on Communication, Control and Computing (2009)Google Scholar
  11. 11.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: The Proceedings of the Symposium on Foundations of Computer Science (2003)Google Scholar
  12. 12.
    Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected dominating sets. In: The International Conference on Computer Communication (1997)Google Scholar
  13. 13.
    Gasieniec L., Pelc A., Peleg D.: The wakeup problem in synchronous broadcast systems. SIAM J. Discret. Math. 14(2), 207–222 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gollakota, S., Katabi, D.: ZigZag decoding: combating hidden terminals in wireless networks. In: The Proceedings of the ACM SIGCOMM Conference (2008)Google Scholar
  15. 15.
    Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the physical interference model. In: Joint Workshop on Foundations of Mobile Computing (2008)Google Scholar
  16. 16.
    Gupta P., Kumar P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory IT-46(2), 388–404 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ingram, R., Radeva, T., Shields, P., Walter, J., Welch, J.: An asynchronous leader election algorithm for dynamic networks without perfect clocks. In: The Proceedings of the International Symposium on Parallel and Distributed Processing (2009)Google Scholar
  18. 18.
    Jurdzinski, T., Stachowiak, G.: Probabilistic algorithms for the wakeup problem in single-hop radio networks. In: Proceedings of the International Symposium on Algorithms and Computation (2002)Google Scholar
  19. 19.
    Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool Publishers, 2006. Also MIT-LCS-TR-917aGoogle Scholar
  20. 20.
    Khabbazian, M., Kowalski, D., Kuhn, F., Lynch, N.: The Cost of Global Broadcast using Abstract MAC Layers. Technical report, MIT Computer Science and Artificial Intelligence Laboratory (2010)Google Scholar
  21. 21.
    Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In: The Proceedings of the International Symposium on Principles of Distributed Computing (2003)Google Scholar
  22. 22.
    Kowalski, D., Pelc, A.: Time of radio broadcasting: adaptiveness vs. Obliviousness and Randomization vs. Determinism. In: Proceedings of the Colloquium on Structural Information and Communication Complexity (2003)Google Scholar
  23. 23.
    Kowalski D., Pelc A.: Time of deterministic broadcasting in radio networks with local knowledge. SIAM J. Comput. 33(4), 870–891 (2004)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kowalski, D.R., Pelc, A.: Deterministic broadcasting time in radio networks of unknown topology. In: The Proceedings of the Symposium on Foundations of Computer Science (2002)Google Scholar
  25. 25.
    Kranakis E., Krizanc D., Pelc A.: Fault-tolerant broadcasting in radio networks. J. Algorithms 39(1), 47–67 (2001)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kuhn, F., Lynch, N., Newport, C.: Brief announcement: hardness of broadcasting in wireless networks with unreliable communication. In: The Proceedings of the International Symposium on Principles of Distributed Computing (2009)Google Scholar
  27. 27.
    Kuhn, F., Lynch, N., Newport, C.: The abstract MAC layer. In: The Proceedings of the International Symposium on Distributed Computing (2009)Google Scholar
  28. 28.
    Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in Radio Networks with Unreliable Communication. Manuscript (2010)Google Scholar
  29. 29.
    Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic distributed maximal independent set computation on growth-bounded graphs. In: The Proceedings of the International Symposium on Distributed Computing (2005)Google Scholar
  30. 30.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Initializing newly deployed ad hoc and sensor networks. In: The Proceedings of the International Conference on Mobile Computing and Networking (2004)Google Scholar
  31. 31.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Fault-tolerant clustering in ad hoc and sensor networks. In: The IEEE International Conference on Distributed Computing Systems (2006)Google Scholar
  32. 32.
    Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: The Proceedings of the International Symposium on Principles of Distributed Computing (2005)Google Scholar
  33. 33.
    Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: The Proceedings of Conference on Computer Communications (2006)Google Scholar
  34. 34.
    Nelson R., Kleinrock L.: Spatial TDMA: a collision-free multihop channel access protocol. IEEE Trans. Commun. 33(9), 934–944 (1985)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Scheideler, C., Richa, A., Santi, P.: An O(log n) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: The ACM International Symposium on Mobile Ad Hoc Networking and Computing (2008)Google Scholar
  36. 36.
    Walter, J., Cao, G., Mohanty, M.: A k-mutual exclusion algorithm for wireless ad hoc networks. In: The Proceedings of the Workshop on Principles of Mobile Computing (2001)Google Scholar
  37. 37.
    Walter J., Welch J., Vaidya N.: A mutual exclusion algorithm for ad hoc mobile networks. Wirel. Netw. 7(6), 585–600 (2001)MATHCrossRefGoogle Scholar
  38. 38.
    Wan P.-J., Alzoubi K., Frieder O.: Distributed construction of connected dominating set in wireless ad hoc networks. Mobile Netw. Appl. 9(2), 141–149 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.University of Lugano (USI)LuganoSwitzerland
  2. 2.MIT CSAILCambridgeUSA

Personalised recommendations