Distributed Computing

, Volume 22, Issue 5–6, pp 287–301

# New combinatorial topology bounds for renaming: the lower bound

• Armando Castañeda
• Sergio Rajsbaum
Article

## Abstract

In the renaming task n + 1 processes start with unique input names taken from a large space and must choose unique output names taken from a smaller name space, 0, 1, . . . , K. To rule out trivial solutions, a protocol must be anonymous: the value chosen by a process can depend on its input name and on the execution, but not on the specific process id. Attiya et al. showed in 1990 that renaming has a wait-free solution when K ≥ 2n. Several proofs of a lower bound stating that no such protocol exists when K < 2n have been published. We presented in the ACM PODC 2008 conference the following two results. First, we presented the first completely combinatorial lower bound proof stating that no such a protocol exists when K < 2n. This bound holds for infinitely many values of n. Second, for the other values of n, we proved that the lower bound for K < 2n is incorrect, exhibiting a wait-free renaming protocol for K = 2n−1. More precisely, we presented a theorem stating that there exists a wait-free renaming protocol for K < 2n if and only if the set of integers $${\{ {n+1 \choose i+1} | 0 \leq i \leq \lfloor \frac{n-1}{2} \rfloor \}}$$ are relatively prime. This paper is the first part of the full version of the results presented in the ACM PODC 2008 conference. It includes only the lower bound. Namely, we show here that no protocol for renaming exists when K <  2n, if n is such that $${\{ {n+1 \choose i+1} | 0 \leq i \leq \lfloor \frac{n-1}{2}\rfloor \}}$$ are not relatively prime. We prove this result using the known equivalence of K-renaming for K = 2n−1 and the weak symmetry breaking task. In this task processes have no input values and the output values are 0 or 1, and it is required that in every execution in which all processes participate, at least one process decides 0 and at least one process decides 1. The full version of the upper bound appears in a companion paper [10].

## Keywords

Shared-memory Renaming Lower bound Combinatorial topology

## References

1. 1.
Attiya H., Rajsbaum S.: The combinatorial structure of wait-free solvable tasks. SIAM J. Comput. 31(4), 1286–1313 (2002)
2. 2.
Attiya H., Bar-Noy A., Dolev D.: Sharing memory robustly in message-passage systems. J. ACM 42(1), 124–142 (1995)
3. 3.
Attiya H., Bar-Noy A., Dolev D., Peleg D., Reischuck R.: Renaming in asynchronous environment. J. ACM 37(3), 524–548 (1990)
4. 4.
Attiya H., Welch J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics. McGraw-Hill, NY (1998)Google Scholar
5. 5.
Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pp. 91–100 (1993)Google Scholar
6. 6.
Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. Proceedings of the 12th Annual ACM Symposium on Principles on Distributed Computing, pp. 41–51 (1993)Google Scholar
7. 7.
Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-free computations. Proceedings of the 16th Annual ACM Symposium on Principles on Distributed Computing, pp. 189–198 (1997)Google Scholar
8. 8.
Borowsky E., Gafni E., Lynch N., Rajsbaum S.: The BG distributed simulation algorithm. Distrib. Comput. 14(3), 127–146 (2001)
9. 9.
Castañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds for renaming. Proceedings of the 27th Annual ACM Symposium on Principles on Distributed Computing, pp. 295–304 (2008)Google Scholar
10. 10.
Castañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds for renaming: the upper bound. Publicación Preliminar No. 872 del Instituto de Matemáticas, Universidad Nacional Autónoma de México, December 2009. http://texedores.matem.unam.mx/publicaciones/index.php?option=com_remository&Itemid=57&func=fileinfo&id=163. Preliminary version is in [9]. Submitted for publication
11. 11.
Castañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds for renaming: the lower bound. Publicación Preliminar No. 873 del Instituto de Matemáticas, Universidad Nacional Autónoma de México, April 2010. http://texedores.matem.unam.mx/publicaciones/index.php?option=com_remository&Itemid=57&func=fileinfo&id=167. Preliminary version is in [9]
12. 12.
Chaudhuri S.: More choices allow more faults: set consensus problems in totally asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)
13. 13.
Fan K.: Simplicial maps from an orientable n-pseudomanifold into S m with the octahedral triangulation. J. Combin. Theor. 2, 588–602 (1967)
14. 14.
Gafni, E.: The extended BG-simulation and the characterization of t-resiliency. Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 85–92 (2009)Google Scholar
15. 15.
Gafni E., Mostéfaoui A., Raynal M., Travers C.: From adaptive renaming to set agreement. Theor. Comput. Sci. 410(14), 1328–1335 (2009)
16. 16.
Gafni E., Rajsbaum S., Herlihy M.: Subconsensus tasks: renaming is weaker than set agreement. Proceedings of the 20th International Symposium on Distributed Computing, pp. 329–338 (2006)Google Scholar
17. 17.
Gafni, E., Rajsbaum, S.: Musical benches. Proceedings of the 19th International Symposium on Distributed Computing, pp. 63–77 (2005)Google Scholar
18. 18.
Gafni E., Koutsoupias E.: Three-processor tasks are undecidable. SIAM J. Comput. 28(3), 970–983 (1999)
19. 19.
Goubault, E.: Proceedings of the Workshops on Geometric and Topological Methods in Concurrency Theory (GETCO 2004, 2005, 2006). Electronic Notes in Theoretical Computer Science 230, pp. 1–2 (2009)Google Scholar
20. 20.
Guerraoui R., Herlihy M., Pochon B.: A topological treatment of early-deciding set-agreement. Theor. Comput. Sci. 410(6–7), 570–580 (2009)
21. 21.
Havlicek J.: A note on the homotopy type of wait-free atomic snapshot protocol complexes. SIAM J. Comput. 33(5), 1215–1222 (2004)
22. 22.
Henle, M.: A combinatorial introduction to topology. Dover 1994Google Scholar
23. 23.
Herlihy M., Rajsbaum S.: A classification of wait-free loop agreement tasks. Theor. Comput. Sci. 291(1), 55–77 (2003)
24. 24.
Herlihy M., Rajsbaum S.: Algebraic spans. Math. Struct. Comput. Sci. 10(4), 549–573 (2000)
25. 25.
Herlihy M., Shavit N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)
26. 26.
Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks (extended abstract). Proceedings of the 29th ACM Symposium on the Theory of Computing, pp. 589–598 (1997)Google Scholar
27. 27.
Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient Tasks. Proceedings of the 25th ACM Symposium on the Theory of Computing, pp. 111–120 (1993)Google Scholar
28. 28.
Hoest G., Shavit N.: Toward a topological characterization of asynchronous complexity. SIAM J. Comput. 36(2), 457–497 (2006)
29. 29.
Mostéfaoui, A., Rajsbaum, S., Raynal. M., Roy, M.: Condition-based protocols for set agreement problems. Proceedings of the 16th International Symposium on Distributed Computing, pp. 48–62 (2002)Google Scholar
30. 30.
Redmond D.: Number Theory. An Introduction. Mercel Dekker, New York (1996)
31. 31.
Saks M., Zaharoglou F.: Wait-free k-set agreement is impossible: the topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)
32. 32.
Workshop on Algebraic Topological Methods in Computer Science, Paris, France 7–11 2008. http://www.lix.polytechnique.fr/~sanjeevi/atmcs/