Distributed Computing

, Volume 21, Issue 6, pp 395–403 | Cite as

Distributed computing with advice: information sensitivity of graph coloring

  • Pierre Fraigniaud
  • Cyril Gavoille
  • David Ilcinkas
  • Andrzej Pelc
Article

Abstract

We study the problem of the amount of information (advice) about a graph that must be given to its nodes in order to achieve fast distributed computations. The required size of the advice enables to measure the information sensitivity of a network problem. A problem is information sensitive if little advice is enough to solve the problem rapidly (i.e., much faster than in the absence of any advice), whereas it is information insensitive if it requires giving a lot of information to the nodes in order to ensure fast computation of the solution. In this paper, we study the information sensitivity of distributed graph coloring.

Keywords

Network algorithm Graph coloring Distributed computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon N., Babai L., Itai A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Awerbuch, B., Goldberg, A., Luby, M., Plotkin, S.: Network decomposition and locality in distributed computation. In: 30th Symp. on Foundations of Computer Science (FOCS), pp. 364–369, (1989)Google Scholar
  3. 3.
    Bellare M., Goldreich O., Sudan M.: Free bits, PCPs, and nonapproximability—towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. In: 32nd Int. Colloquium on Automata, Languages and Programming (ICALP), LNCS 3580, pp. 335–346 (2005)Google Scholar
  5. 5.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Labeling schemes for tree representation. In: 7th Int. Workshop on Distributed Computing (IWDC), LNCS 3741, pp. 13–24 (2005)Google Scholar
  6. 6.
    Cole, R., Vishkin, U.: Deterministic coin tossing and accelerating cascades: micro and macro techniques for designing parallel algorithms. In: 18th ACM Symp. on Theory of Computing (STOC), pp. 206–219 (1986)Google Scholar
  7. 7.
    Feige U., Kilian J.: Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57(2), 187–199 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fich F., Ruppert E.: Hundreds of impossibility results for distributed computing. Distrib. Comput. 16, 121–163 (2003)CrossRefGoogle Scholar
  9. 9.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: 25th ACM Symp. on Principles of Distributed Computing (PODC), pp. 179–187 (2006)Google Scholar
  10. 10.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with an oracle. In: 31st Int. Symp. on Mathematical Foundations of Computer Science (MFCS), LNCS 4162, Springer, pp. 24–37 (2006)Google Scholar
  11. 11.
    Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice. In: 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2007)Google Scholar
  12. 12.
    Goldberg, A., Plotkin, S.: Efficient parallel algorithms for (Δ + 1)-coloring and maximal independent set problems. In: 19th ACM Symp. on Theory of Computing (STOC), pp. 315–324 (1987)Google Scholar
  13. 13.
    Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse graphs. In: 19th ACM Symp. on Theory of Computing (STOC), pp. 315–324 (1987)Google Scholar
  14. 14.
    Karp, R.: Reducibility Among Combinatorial Problems. In: Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  15. 15.
    Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Distributed coloring in \({O(\sqrt{\log n})}\) bit rounds. In: 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2006)Google Scholar
  16. 16.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed Locally! In: 23th ACM Symp. on Principles of Distributed Computing, (PODC), pp. 300–309 (2004)Google Scholar
  17. 17.
    Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: 25th ACM Symp. on Principles of Distributed Computing (PODC), pp. 7–15 (2006)Google Scholar
  18. 18.
    Linial N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Luby M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lynch, N.: A hundred impossibility proofs for distributed computing. In: 8th ACM Symp. on Principles of Distributed Computing (PODC), pp. 1–28 (1989)Google Scholar
  21. 21.
    Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: 17th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 39–48 (2005)Google Scholar
  22. 22.
    Naor M.: A lower bound on probabilistic algorithms for distributive ring coloring. SIAM J. Discrete Math. 4(3), 409–412 (1991)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Naor, M., Stockmeyer, L.: What can be computed locally? In: 25th ACM Symposium on Theory of Computing (STOC), pp. 184–193 (1993)Google Scholar
  24. 24.
    Nisse, N., Soguet, D.: Graph searching with advice. In: 14th International Colloquium on Structural Information and Communication Complexity (SIROCCO), June 2007Google Scholar
  25. 25.
    Panconesi A., Rizzi R.: Some simple distributed algorithms for sparse networks. Distrib. Comput. 14, 97–100 (2001)CrossRefGoogle Scholar
  26. 26.
    Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and network decomposition problems. In: 24th ACM Symp. on Theory of Computing (STOC), pp. 581–592 (1992)Google Scholar
  27. 27.
    Panconesi A., Srinivasan A.: On the complexity of distributed network decomposition. J. Algorithms 20(2), 356–374 (1996)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM Monographs on Discrete Mathematics and applications. Philadelphia, PA (2000)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Cyril Gavoille
    • 2
  • David Ilcinkas
    • 2
  • Andrzej Pelc
    • 3
  1. 1.LIAFAUniversité Paris Diderot, Paris 7Paris Cedex 13France
  2. 2.LaBRIUniversite Bordeaux 1Talence CedexFrance
  3. 3.Département d’informatique et d’ingénierieUniversité du Québec OutaouaisGatineauCanada

Personalised recommendations