Advertisement

Distributed Computing

, Volume 20, Issue 1, pp 39–51 | Cite as

Transient fault detectors

  • Joffroy BeauquierEmail author
  • Sylvie Delaët
  • Shlomi Dolev
  • Sébastien Tixeuil
Article

Abstract

We present fault detectors for transient faults, (i.e., corruptions of the memory of the processors, but not of the code of the processors). We distinguish fault detectors for tasks (i.e., the problem to be solved) from failure detectors for implementations (i.e., the algorithm that solves the problem). The aim of our fault detectors is to detect a memory corruption as soon as possible. We study the amount of memory needed by the fault detectors for some specific tasks, and give bounds for each task. The amount of memory is related to the size and the number of views that a processor has to maintain to ensure a quick detection. This work may give the implementation designer hints concerning the techniques and resources that are required for implementing a task.

Keywords

Distributed systems Transient faults Fault detectors Self-stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek Y., Dolev S. (2002). Local stabilizer. J. Parallel Distrib. Comput. 62(5): 745–765 zbMATHCrossRefGoogle Scholar
  2. 2.
    Afek Y., Kutten S., Yung M. (1990). Memory-efficient self stabilizing protocols for general networks. In: van Leeuwen, J., Santoro, N. (eds) WDAG, Lecture Notes in Computer Science, vol. 486, pp 15–28. Springer, Berlin Google Scholar
  3. 3.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction (extended abstract). In: FOCS, pp. 268–277. IEEE (1991)Google Scholar
  4. 4.
    Awerbuch B., Patt-Shamir B., Varghese G., Dolev S. (1994). Self-stabilization by local checking and global reset (extended abstract). In: Tel, G., Vitányi, P.M.B. (eds) WDAG, Lecture Notes in Computer Science, vol. 857, pp 326–339. Springer, Berlin Google Scholar
  5. 5.
    Burns J.E., Gouda M.G., Miller R.E. (1993). Stabilization and pseudo-stabilization. Distrib. Comput. 7(1): 35–42 zbMATHCrossRefGoogle Scholar
  6. 6.
    Chandra T.D., Toueg S. (1996). Unreliable failure detectors for reliable distributed systems. J. ACM 43(2): 225–267 zbMATHCrossRefGoogle Scholar
  7. 7.
    Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited. J. Aerosp. Comput. Inf. Commun. (2006)Google Scholar
  8. 8.
    Delaët S., Tixeuil S. (2002). Tolerating transient and intermittent failures. J. Parallel Distrib. Comput. 62(5): 961–981 zbMATHCrossRefGoogle Scholar
  9. 9.
    Dijkstra E.W. (1974). Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11): 643–644 zbMATHCrossRefGoogle Scholar
  10. 10.
    Dolev S. (1997). Self-stabilizing routing and related protocol. J. Parallel Distrib. Comput. 42(2): 122–127 CrossRefGoogle Scholar
  11. 11.
    Dolev S. (2000). Self-stabilization. MIT Press, Cambridge zbMATHGoogle Scholar
  12. 12.
    Dolev S., Gouda M.G., Schneider M. (1999). Memory requirements for silent stabilization. Acta Inf. 36(6): 447–462 zbMATHCrossRefGoogle Scholar
  13. 13.
    Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. Chicago J. Theor. Comput. Sci. 1997 (1997)Google Scholar
  14. 14.
    Dolev S., Israeli A., Moran S. (1993). Self-stabilization of dynamic systems assuming only read/write atomicity. Distrib. Comput. 7(1): 3–16 CrossRefGoogle Scholar
  15. 15.
    Dolev S., Israeli A., Moran S. (1995). Analyzing expected time by scheduler-luck games. IEEE Trans. Softw. Eng. 21(5): 429–439 CrossRefGoogle Scholar
  16. 16.
    Dolev, S., Kranakis, E., Krizanc, D., Peleg, D.: Bubbles: adaptive routing scheme for high-speed dynamic networks (extended abstract). In: STOC, pp. 528–537. ACM (1995)Google Scholar
  17. 17.
    Ducourthial B., Tixeuil S. (2001). Self-stabilization with r-operators. Distrib. Comput. 14(3): 147–162 CrossRefGoogle Scholar
  18. 18.
    Ducourthial, B., Tixeuil, S.: Self-stabilization with path algebra. Theor. Comput. Sci. 293(1), 219–236 (2003). Extended abstract in Sirrocco 2000Google Scholar
  19. 19.
    Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing algorithms. In: PODC, pp. 45–54 (1996)Google Scholar
  20. 20.
    Katz S., Perry K.J. (1993). Self-stabilizing extensions for message-passing systems. Distribut. Comput. 7(1): 17–26 CrossRefGoogle Scholar
  21. 21.
    Kutten, S., Patt-Shamir, B.: Time-adaptive self stabilization. In: PODC, pp. 149–158 (1997)Google Scholar
  22. 22.
    Lin, C., Simon, J.: Observing self-stabilization. In: PODC92 Proceedings of the 11th annual ACM symposium on principles of distributed computing, pp. 113–123 (1992)Google Scholar
  23. 23.
    Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM Monogr. Discr. Math. Appl. (2000)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Joffroy Beauquier
    • 1
    Email author
  • Sylvie Delaët
    • 2
  • Shlomi Dolev
    • 3
  • Sébastien Tixeuil
    • 1
  1. 1.University of Paris Sud, LRI-CNRS 8623OrsayFrance
  2. 2.University of Paris Sud, LRI-CNRS 8623OrsayFrance
  3. 3.Department of Mathematics and Computer ScienceBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations