Distributed Computing

, Volume 20, Issue 2, pp 95–114 | Cite as

The design of novel distributed protocols from differential equations

  • Indranil Gupta
  • Mahvesh Nagda
  • Christo Frank Devaraj


This paper proposes a framework to translate certain subclasses of differential equation systems into practical protocols for distributed systems. The generated protocols are intended for large-scale distributed systems that contain several hundreds to thousands of processes. The synthesized protocols are state machines containing probabilistic transitions and actions, and they are proved to show equivalent stochastic behavior to the original equations. The protocols are probabilistically scalable and reliable, and have practical applications in large-scale distributed systems, e.g., peer to peer systems. In order to illustrate the usefulness of the framework, it is used to generate new solutions for the problems of (a) responsibility migration (giving rise to a novel model of dynamic replication), and (b) majority selection. We present mathematical analysis of these two protocols, and experimental results from our implementations. These two protocols are derived from natural analogies that are represented as differential equations—endemics and the Lotka–Volterra model of competition, respectively. We believe the design framework could be effectively used in transforming, in a very systematic manner, well-known natural phenomena into protocols for distributed systems.


Science of protocol design Differential equations Distributed protocols Scalability Reliability Replication Endemics Voting LV Probabilistic protocols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achlioptas D. (2001). Lower bounds for random 3-SAT via differential equations. Theor. Comp. Sci. 265(1–2): 159–185 zbMATHCrossRefGoogle Scholar
  2. 2.
    Ambrosio, J.: Tools for the code generation., (2004)Google Scholar
  3. 3.
    Anderson, R.J.: The Eternity Service. In: Proc. Pragocrypt (1996)Google Scholar
  4. 4.
    Bailey N.T.J. (1975). Epidemic theory of infectious diseases and its applications, 2nd edn . Hafner, New York Google Scholar
  5. 5.
    Bhagwan, R., Savage, S., Voelker, G.M.: Understanding availability. Proc. Int. Symp. Peer Peer Syst. 135–140 (2003)Google Scholar
  6. 6.
    Bhagwan, R., et al.: Total Recall: system support for automated availability management. Proc. Usenix Netw. Sys. Des. Implement. 337–350 (2004)Google Scholar
  7. 7.
    Cohen, E., Shenker, S.: Replication strategies in unstructured peer-to-peer networks. Proc. ACM SIGCOMM 177–190 (2002)Google Scholar
  8. 8.
    Colouris G., Dollimore J., Kindberg T. (2001). Distributed systems: concepts and design, 3rd edn. Addison-Wesley, USA Google Scholar
  9. 9.
    Corradi A., Leonardi L., Zambonelli F. (1999). Diffusive load-balancing policies for dynamic applications. IEEE Concurr. 7(1): 22–31 CrossRefGoogle Scholar
  10. 10.
    Das, A., Gupta, I., Motivala, A.: SWIM: scalable weakly-consistent infection-style process group membership protocol. Proc. IEEE Dependable Syst. Netw. 303–312 (2002)Google Scholar
  11. 11.
    Demers, A., et al.: Epidemic algorithms for replicated database maintenance. Proc. ACM Symp. Princ. Dist. Comp. 1–12 (1987)Google Scholar
  12. 12.
    Fischer M.J., Lynch N.A., Patterson M. (1985). Impossibility of distributed consensus with one faulty process. J. ACM 32(2): 374–382 zbMATHCrossRefGoogle Scholar
  13. 13.
    Gray, J., et al.: The dangers of replication and a solution. Proc. ACM SIGMOD 173–182 (1996)Google Scholar
  14. 14.
    Gupta, I.: On the design of distributed protocols from differential equations. Proc. ACM Symp. Princ. Dist. Comp. 216–225 (2004)Google Scholar
  15. 15.
    Kreyszig, E.: Advanced engineering mathematics, 8th edn. Wiley, NJ (1998)Google Scholar
  16. 16.
    Kubiatowicz, J., et al.: Oceanstore: an architecture for globalscale persistent store. Proc. ACM Annl. Symp. Prog. Langs. Oper. Syst. 190–201 (2000)Google Scholar
  17. 17.
    Kurtz, T.G.: Approximation of population processes. Regional conference series in applied mathematics, SIAM, 1981, ISBN 0-89871-169-XGoogle Scholar
  18. 18.
    Maniatis, P. et al.: Preserving peer replicas by rate-limited sampled voting. Proc. ACM Symp. Oper. Syst. Princ. 44–59 (2003)Google Scholar
  19. 19.
    Merritt, M., Taubenfeld, G.: Computing with infinitely many processes. Proc. Dist. Comp. Springer LNCS 1914, 164–178 (2000)Google Scholar
  20. 20.
    Mitzenmacher M. (2001). The power of two choices in randomized load balancing. IEEE Trans. Parallel Dist. Syst. 12(10): 1094–1104 CrossRefGoogle Scholar
  21. 21.
    Putman R.J., Wratten S.D. (1984). Principles of ecology. Croom Helm, London Google Scholar
  22. 22.
    Rabin, M.O.: Randomized byzantine generals. Proc. Found. Comp. Sci. 403–409 (1983)Google Scholar
  23. 23.
    Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility. Proc. ACM Symp. Oper. Syst. Princ. 188–201 (2001)Google Scholar
  24. 24.
    Saito, Y., et al.: Taming aggressive replication in the Pangaea file system. ACM SIGOPS Oper. Sys. Rev. 15–30 (2001)Google Scholar
  25. 25.
    Schroeder M.D., Birrell A.D., Needham R.M. (1984). Experience with Grapevine: the growth of a distributed system. ACM Trans. Comp. Syst. 2(1): 3–23 CrossRefGoogle Scholar
  26. 26.
    Strogatz S.H. (2001). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering, 1st edn. Perseus, New York Google Scholar
  27. 27.
    Weisstein, E.W.: Heat conduction equation. MathWorld–A Wolfram Web Resource, 2004, Scholar
  28. 28.
    Wormald N.C. (1995). Differential equations for random processes and random graphs. Ann. Appl. Prob. 5(4): 1217–1235 zbMATHGoogle Scholar
  29. 29.
    Wu S.-H. et al. (1997). Composition and behaviors of probabilistic I/O automata. Theor. Comp. Sci. 176(1–2): 1–38 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Indranil Gupta
    • 1
  • Mahvesh Nagda
    • 2
  • Christo Frank Devaraj
    • 3
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Wolverine Asset ManagementNapervilleUSA
  3. 3.Microsoft CorporationSeattleUSA

Personalised recommendations